373 research outputs found
Environmental pH Affects Photoautotrophic Growth of Synechocystis sp. PCC 6803 Strains Carrying Mutations in the Lumenal Proteins of PSII.
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5
Recommended from our members
Toward an integrative understanding of social behavior: new models and new opportunities.
Social interactions among conspecifics are a fundamental and adaptively significant component of the biology of numerous species. Such interactions give rise to group living as well as many of the complex forms of cooperation and conflict that occur within animal groups. Although previous conceptual models have focused on the ecological causes and fitness consequences of variation in social interactions, recent developments in endocrinology, neuroscience, and molecular genetics offer exciting opportunities to develop more integrated research programs that will facilitate new insights into the physiological causes and consequences of social variation. Here, we propose an integrative framework of social behavior that emphasizes relationships between ultimate-level function and proximate-level mechanism, thereby providing a foundation for exploring the full diversity of factors that underlie variation in social interactions, and ultimately sociality. In addition to identifying new model systems for the study of human psychopathologies, this framework provides a mechanistic basis for predicting how social behavior will change in response to environmental variation. We argue that the study of non-model organisms is essential for implementing this integrative model of social behavior because such species can be studied simultaneously in the lab and field, thereby allowing integration of rigorously controlled experimental manipulations with detailed observations of the ecological contexts in which interactions among conspecifics occur
HST/NICMOS Observations of NGC 1333: The Ratio of Stars to Sub-Stellar Objects
We present an analysis of NICMOS photometry and low-resolution grism
spectroscopy of low-mass stars and sub-stellar objects in the young
star-forming region NGC 1333. Our goal is to constrain the ratio of low-mass
stars to sub- stellar objects down to 20 Mjup in the cluster as well as
constrain the cluster IMF down to 30 Mjup in combination with a previous survey
of NGC 1333 by Wilking et al. Our survey covers 4 fields of 51.2" x 51.2",
centered on brown dwarf candidates previously identified in Wilking et al. We
extend previous work based on the use of a water vapor index for spectral
typing to wavelengths accessible with NICMOS on the HST. Spectral types were
derived for the 14 brightest objects in our fields, ranging from <M0 - M8,
which at the age of the cluster (0.3 Myr) corresponds to a range in mass of
>0.25 - 0.02 Msun. In addition to the spectra, we present an analysis of the
color-magnitude diagram using pre-main sequence evolutionary models of D'Antona
& Mazzitelli. Using an extinction-limited sample, we derive the ratio of
low-mass stars to brown dwarfs. Comparisons of the observed ratio to that
expected from the field IMF of Chabrier indicate that the two results are
consistent. We combine our data with that of Wilking et al. to compute the
ratio of intermediate-mass stars (0.1 - 1.0 Msun) to low-mass objects (0.03 -
0.1 Msun) in the cluster. We also report the discovery of a faint companion to
the previously confirmed brown dwarf ASR 28, as well as a possible outflow
surrounding ASR 16. If the faint companion is confirmed as a cluster member, it
would have a mass of ~ 5 Mjup (mass ratio 0.15) at a projected distance of 350
AU, similar to 2MASS 1207-3923 B.Comment: 33 pages, 6 figures, accepted for publication by A
Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy
3D functional imaging of neuronal activity in entire organisms at single cell
level and physiologically relevant time scales faces major obstacles due to
trade-offs between the size of the imaged volumes, and spatial and temporal
resolution. Here, using light-field microscopy in combination with 3D
deconvolution, we demonstrate intrinsically simultaneous volumetric functional
imaging of neuronal population activity at single neuron resolution for an
entire organism, the nematode Caenorhabditis elegans. The simplicity of our
technique and possibility of the integration into epi-fluoresence microscopes
makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio
Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
The emotional context of self-management in chronic illness: A qualitative study of the role of health professional support in the self-management of type 2 diabetes
Background: Support for patient self-management is an accepted role for health professionals. Little evidence exists on the appropriate basis for the role of health professionals in achieving optimum self-management outcomes. This study explores the perceptions of people with type 2 diabetes about their self-management strategies and how relationships with health professionals may support this.Methods: Four focus groups were conducted with people with type 2 diabetes: two with English speaking and one each with Turkish and Arabic-speaking. Transcripts from the groups were analysed drawing on grounded hermeneutics and interpretive description.Results: We describe three conceptually linked categories of text from the focus groups based on emotional context of self management, dominant approaches to self management and support from health professionals for self management. All groups described important emotional contexts to living with and self-managing diabetes and these linked closely with how they approached their diabetes management and what they looked for from health professionals. Culture seemed an important influence in shaping these linkages.Conclusion: Our findings suggest people construct their own individual self-management and self-care program, springing from an important emotional base. This is shaped in part by culture and in turn determines the aims each person has in pursuing self-management strategies and the role they make available to health professionals to support them. While health professionals\u27 support for self-care strategies will be more congruent with patients\u27 expectations if they explore each person\u27s social, emotional and cultural circumstances, pursuit of improved health outcomes may involve a careful balance between supporting as well as helping shift the emotional constructs surrounding a patient life with diabetes.<br /
Habitat Imaging Biomarkers for Diagnosis and Prognosis in Cancer Patients Infected with COVID-19
OBJECTIVES: Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients. In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity prediction particularly in a cancer population and further compare it head-to-head to a general population.
METHODS: We have enrolled multi-center international cohorts with 531 CT scans from 502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging pipeline was developed to quantify the complex infection patterns by partitioning the whole lung regions into phenotypically different subregions. Subsequently, various machine learning models nested with feature selection were built for COVID-19 detection and severity prediction.
RESULTS: These models showed almost perfect performance in COVID-19 infection diagnosis and predicting its severity during cross validation. Our analysis revealed that models built separately on the cancer population performed significantly better than those built on the general population and locked to test on the cancer population. This may be because of the significant difference among the habitat features across the two different cohorts.
CONCLUSIONS: Taken together, our habitat imaging analysis as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management in the cancer population
Ambulatory function in spinal muscular atrophy: Age-related patterns of progression
Individuals with spinal muscular atrophy (SMA) type 3 are able to walk but they have weakness, gait impairments and fatigue. Our primary study objective was to examine longitudinal changes in the six-minute walk test (6MWT) and to evaluate whether age and SMA type 3 subtype are associated with decline in ambulatory function. Data from three prospective natural history studies were used. Seventy-three participants who performed the 6MWT more than once, at least 6 months apart, were included; follow-up ranged from 0.5–9 years. Only data from patients who completed the 6MWT were included. The mean age of the participants was 13.5 years (range 2.6–49.1), with 52 having disease onset before age 3 years (type 3A). At baseline, type 3A participants walked a shorter distance on average (257.1 m) than type 3B participants (390.2 m) (difference = 133.1 m, 95% confidence interval [CI] 71.8–194.3, p < 0.001). Distance walked was weakly associated with age (r = 0.25, p = 0.04). Linear mixed effects models were used to estimate the mean annual rate of change. The overall mean rate of change was -7.8 m/year (95% CI -13.6 –-2.0, p = 0.009) and this did not differ by subtype (type 3A: -8.5 m/year, type 3B: -6.6 m/year, p = 0.78), but it did differ by age group (< 6: 9.8 m/year; 6–10: -7.9 m/year; 11–19: -20.8 m/year; ≥ 20: -9.7 m/year; p = 0.005). Our results showed an overall decline on the 6MWT over time, but different trajectories were observed depending on age. Young ambulant SMA patients gain function but in adolescence, patients lose function. Future clinical trials in ambulant SMA patients should consider in their design the different trajectories of ambulatory function over time, based on age
2-Year Change in Revised Hammersmith Scale Scores in a Large Cohort of Untreated Paediatric Type 2 and 3 SMA Participants
The Revised Hammersmith Scale (RHS) is a 36-item ordinal scale developed using clinical expertise and sound psychometrics to investigate motor function in participants with Spinal Muscular Atrophy (SMA). In this study, we investigate median change in the RHS score up to two years in paediatric SMA 2 and 3 participants and contextualise it to the Hammersmith Functional Motor Scale-Expanded (HFMSE). These change scores were considered by SMA type, motor function, and baseline RHS score. We consider a new transitional group, spanning crawlers, standers, and walkers-with-assistance, and analyse that alongside non-sitters, sitters, and walkers. The transitional group exhibit the most definitive change score trend, with an average 1-year decline of 3 points. In the weakest patients, we are most able to detect positive change in the RHS in the under-5 age group, whereas in the stronger patients, we are most able to detect decline in the RHS in the 8-13 age group. The RHS has a reduced floor effect compared to the HFMSE, although we show that the RHS should be used in conjunction with the RULM for participants scoring less than 20 points on the RHS. The timed items in the RHS have high between-participant variability, so participants with the same RHS total can be differentiated by their timed test items
- …