23 research outputs found

    The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas

    Get PDF
    Edible microalgae have potential as low-cost cell factories for the production and oral delivery of recombinant proteins such as vaccines, anti-bacterials and gut-active enzymes that are beneficial to farmed animals including livestock, poultry and fish. However, a major economic and technical problem associated with large-scale cultivation of microalgae, even in closed photobioreactors, is invasion by contaminating microorganisms. Avoiding this requires costly media sterilisation, aseptic techniques during set-up and implementation of 'crop-protection' strategies during cultivation. Here, we report a strain improvement approach in which the chloroplast of Chlamydomonas reinhardtii is engineered to allow oxidation of phosphite to its bio-available form: phosphate. We have designed a synthetic version of the bacterial gene (ptxD)-encoding phosphite oxidoreductase such that it is highly expressed in the chloroplast but has a Trp→Opal codon reassignment for bio-containment of the transgene. Under mixotrophic conditions, the growth rate of the engineered alga is unaffected when phosphate is replaced with phosphite in the medium. Furthermore, under non-sterile conditions, growth of contaminating microorganisms is severely impeded in phosphite medium. This, therefore, offers the possibility of producing algal biomass under non-sterile conditions. The ptxD gene can also serve as a dominant marker for genetic engineering of any C. reinhardtii strain, thereby avoiding the use of antibiotic resistance genes as markers and allowing the 'retro-fitting' of existing engineered strains. As a proof of concept, we demonstrate the application of our ptxD technology to a strain expressing a subunit vaccine targeting a major viral pathogen of farmed fish

    Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii

    Get PDF
    There is a growing interest in the use of microalgae as low‐cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein‐coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome‐binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co‐introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae

    Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications

    Get PDF
    The application of microfluidic technologies to microalgal research is particularly appealing since these approaches allow the precise control of the extracellular environment and offer a high-throughput approach to studying dynamic cellular processes. To expand the portfolio of applications, here we present a droplet-based microfluidic method for analysis and screening of Phaeodactylum tricornutum and Nannochloropsis gaditana, which can be integrated into a genetic transformation workflow. Following encapsulation of single cells in picolitre-sized droplets, fluorescence signals arising from each cell can be used to assess its phenotypic state. In this work, the chlorophyll fluorescence intensity of each cell was quantified and used to identify populations of P. tricornutum cells grown in different light conditions. Further, individual P. tricornutum or N. gaditana cells engineered to express green fluorescent protein were distinguished and sorted from wild-type cells. This has been exploited as a rapid screen for transformed cells within a population, bypassing a major bottleneck in algal transformation workflows and offering an alternative strategy for the identification of genetically modified strains

    Deontic Justice and Organizational Neuroscience

    Full text link

    New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii

    Get PDF
    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species—Chlamydomonas reinhardtii—and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5â€ČUTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone

    Better decision-making through mindfulness-based strategic awareness training

    No full text
    SMU Faculty/Staff can download the case and teaching note with your SMU login ID and Password via the following links: The Case (SMU-22-0031) Teaching Note (SMU-22-0031TN) For purchase of the case and supplementary materials via The CMP Shop, please access the following link: The Case (SMU-22-0031) For purchase of the case and supplementary materials via The Case Centre, please access the following links: The Case (SMU-22-0031) Teaching Note (SMU-22-0031TN) For purchase of the case and supplementary materials via Harvard Business Publishing, please access the following links: The Case (SMU-22-0031) Teaching Note (SMU-22-0031TN) </ul

    Evaluation of the role of galectins in parasite immunity

    No full text
    Galectin-11 and galectin-14 are ruminant galectins involved in parasitic infections. Although their roles in parasite immunity are still being elucidated, its appears that their functions are parasite specific. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. This chapter discusses the methods designed to study parasitic infections in sheep, which have provided us with insight into the functions of galectin-11 and galectin-14 during host–parasite interactions. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins and in vitro assays to monitor the effect of galectins on larval development. © Springer Science+Business Media New York 2015

    Leader Mindfulness and Employee Performance: A Sequential Mediation Model of LMX Quality, Interpersonal Justice, and Employee Stress

    No full text
    corecore