1,957 research outputs found

    Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks for Building Extraction from Aerial Images

    Full text link
    Semantic segmentation models based on convolutional neural networks (CNNs) have gained much attention in relation to remote sensing and have achieved remarkable performance for the extraction of buildings from high-resolution aerial images. However, the issue of limited generalization for unseen images remains. When there is a domain gap between the training and test datasets, CNN-based segmentation models trained by a training dataset fail to segment buildings for the test dataset. In this paper, we propose segmentation networks based on a domain adaptive transfer attack (DATA) scheme for building extraction from aerial images. The proposed system combines the domain transfer and adversarial attack concepts. Based on the DATA scheme, the distribution of the input images can be shifted to that of the target images while turning images into adversarial examples against a target network. Defending adversarial examples adapted to the target domain can overcome the performance degradation due to the domain gap and increase the robustness of the segmentation model. Cross-dataset experiments and the ablation study are conducted for the three different datasets: the Inria aerial image labeling dataset, the Massachusetts building dataset, and the WHU East Asia dataset. Compared to the performance of the segmentation network without the DATA scheme, the proposed method shows improvements in the overall IoU. Moreover, it is verified that the proposed method outperforms even when compared to feature adaptation (FA) and output space adaptation (OSA).Comment: 11pages, 12 figure

    Origin of the increased velocities of domain wall motions in soft magnetic thin-film nanostripes beyond the velocity-breakdown regime

    Get PDF
    It is known that oscillatory domain-wall (DW) motions in soft magnetic thin-film nanostripes above the Walker critical field lead to a remarkable reduction in the average DW velocities. In a much-higher-field region beyond the velocity-breakdown regime, however, the DW velocities have been found to increase in response to a further increase of the applied field. We report on the physical origin and detailed mechanism of this unexpected behavior. We associate the mechanism with the serial dynamic processes of the nucleation of vortex-antivortex (V-AV) pairs inside the stripe or at its edges, the non-linear gyrotropic motions of Vs and AVs, and their annihilation process. The present results imply that a two-dimensional soliton model is required for adequate interpretation of DW motions in the linear- and oscillatory-DW-motion regimes as well as in the beyond-velocity-breakdown regime.Comment: 16 pages, 3 figure

    Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors

    Get PDF
    BACKGROUND: Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. CONCLUSIONS/SIGNIFICANCE: These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells

    Massive transfusion protocol: the reason it is necessary

    Get PDF
    Objective. The purpose of this study is to identify problems of emergency transfusion at the bedside and to determine need for massive transfusion protocol. Methods. We included patients who met the criteria for “trauma team activation” and were admitted to division of trauma. The amount of blood product transfused in each unit was investigated for balanced transfusion. We also investigated the compliance with assessment of blood consumption score. The correlation between the time elapsed from patient visit to first transfusion order and time elapsed from first transfusion order to transfusion start was analyzed. Finally, we investigated various factors which serve to influence the decision-making process regarding early transfusion order. Results. Ratio of packed Red blood cells (pRBC): Fresh frozen plasma (FFP) was well-balanced, but platelet transfusion done was much lower than pRBC and FFP in emergency room. The application of emergency blood release did not match the criteria of assessment of blood consumption (ABC) score. The time from the first transfusion order to the transfusion start was found to be constant irrespective of time from patient visit to first transfusion order. And, the time from the first transfusion order to transfusion start did not differ significantly among patients with early transfusion order and delayed transfusion order. Only systolic blood pressure of < 90 mmHg was identified as a major predictor for early transfusion order. Conclusion. Balanced transfusion is not easy and emergency transfusion could be delayed at the bedside. Integrated and systematic structures for massive transfusion protocol would be invaluable and indispensable

    Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes

    Get PDF
    We report on the criterion for the dynamic transformation of the internal structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes above the Walker threshold field, Hw. In order for the process of transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall (AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently to the full width at half maximum of the out-of-plane magnetizations of the core area of the stabilized vortex (or antivortex) by moving inward along the transverse (width) direction. Upon completion of the nucleation of the vortex (antivortex) core, the VW (AVW) is stabilized, and then its core accompanies the gyrotropic motion in a potential well (hill) of a given nanostripe. Field strengths exceeding the Hw, which is the onset field of DW velocity breakdown, are not sufficient but necessary conditions for dynamic DW transformation
    corecore