32 research outputs found

    Microbially Induced Calcite Precipitation Employing Environmental Isolates

    No full text
    In this study, five microbes were employed to precipitate calcite in cohesionless soils. Four microbes were selected from calcite-precipitating microbes isolated from calcareous sand and limestone cave soils, with Sporosarcina pasteurii ATCC 11859 (standard strain) used as a control. Urease activities of the four microbes were higher than that of S. pasteurii. The microbes and urea–CaCl2 medium were injected at least four times into cohesionless soils of two different relative densities (60% and 80%), and the amount of calcite precipitation was measured. It was found that the relative density of cohesionless soils significantly affects the amount of calcite precipitation and that there is a weak correlation between urease activity and calcite precipitation

    Effect of Temperature, pH, and Reaction Duration on Microbially Induced Calcite Precipitation

    No full text
    In this study, the amount of calcite precipitate resulting from microbially induced calcite precipitation (MICP) was estimated in order to determine the optimal conditions for precipitation. Two microbial species (Staphylococcus saprophyticus and Sporosarcina pasteurii) were tested by varying certain parameters such as (1) initial potential of hydrogen (pH) of urea-CaCl2 medium, (2) temperature during precipitation, and (3) the reaction duration. The pH values used for testing were 6, 7, 8, 9, and 10, the temperatures were 20, 30, 40, and 50 °C, and the reaction durations were 2, 3, and 4 days. Maximum calcite precipitation was observed at a pH of 7 and temperature of 30 °C. Most of the precipitation occurred within a reaction duration of 3 days. Under similar conditions, the amount of calcite precipitated by S. saprophyticus was estimated to be five times more than that by S. pasteurii. Both the species were sensitive to temperature; however, S. saprophyticus was less sensitive to pH and required a shorter reaction duration than S. pasteurii

    Numerical Analysis of Laterally Loaded Piles Affected by Bedrock Depth

    No full text
    This study investigates the lateral behavior of pile foundations socketed into bedrocks using 3D finite difference analysis. The lateral load-displacement curve, pile deflection, and bending moment distribution were obtained for different bedrock depths between 3 and 20 m. It was discovered that bedrocks that have a depth of 7 m (7D) or less influence the lateral behavior of the pile. The p-y curves were collected at depths of 2.0–4.5 m, and the effect of the bedrock on the curves was evaluated. It was observed that the p-y curves were significantly affected by the material properties of the bedrock if the rock is located in close proximity (within 3D), but the effect is diminished if the p-y curves were 3.5 m (3.5D) or farther from the bedrock
    corecore