4 research outputs found
Adjusting microwave sensing frequency through aspect ratio variation and bending repetitions in Permalloy ellipses
Abstract The Ferromagnetic Resonance (FMR) phenomenon, marked by the selective absorption of microwave radiation by magnetic materials in the presence of a magnetic field, plays a pivotal role in the development of radar absorbing materials, high speed magnetic storage, and magnetic sensors. This process is integral for technologies requiring precise control over microwave absorption frequencies. We explored how variations in resonance fields can be effectively modulated by adjusting both the shape and stress anisotropies of magnetic materials on a flexible substrate. Utilizing polyethylene-naphthalate (PEN) as the substrate and Permalloy (Ni79Fe21, noted for its positive magnetostriction coefficient) as the magnetic component, we demonstrated that modifications in the aspect ratio and bending repetitions can significantly alter the resonance field. The results, consistent with Kittel’s equation and the predictions of a uniaxial magnetic anisotropy model, underscore the potential for flexible substrates in enhancing the sensitivity and versatility of RF-based magnetic devices
Blood pressure estimation and its recalibration assessment using wrist cuff blood pressure monitor
The rapid evolution of wearable technology in healthcare sectors has created the opportunity for people to measure their blood pressure (BP) using a smartwatch at any time during their daily activities. Several commercially-available wearable devices have recently been equipped with a BP monitoring feature. However, concerns about recalibration remain. Pulse transit time (PTT)-based estimation is required for initial calibration, followed by periodic recalibration. Recalibration using arm-cuff BP monitors is not practical during everyday activities. In this study, we investigated recalibration using PTT-based BP monitoring aided by a deep neural network (DNN) and validated the performance achieved with more practical wrist-cuff BP monitors. The PTT-based prediction produced a mean absolute error (MAE) of 4.746 ± 1.529 mmHg for systolic blood pressure (SBP) and 3.448 ± 0.608 mmHg for diastolic blood pressure (DBP) when tested with an arm-cuff monitor employing recalibration. Recalibration clearly improved the performance of both DNN and conventional linear regression approaches. We established that the periodic recalibration performed by a wrist-worn BP monitor could be as accurate as that obtained with an arm-worn monitor, confirming the suitability of wrist-worn devices for everyday use. This is the first study to establish the potential of wrist-cuff BP monitors as a means to calibrate BP monitoring devices that can reliably substitute for arm-cuff BP monitors. With the use of wrist-cuff BP monitoring devices, continuous BP estimation, as well as frequent calibrations to ensure accurate BP monitoring, are now feasible. © 2023, Korean Society of Medical and Biological Engineering.11Nsciescopuskc
Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations
Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator