8 research outputs found

    Failure to find DUP25 in patients with anxiety disorders, in control individuals, or in previously reported positive control cell lines

    Get PDF
    Investigation of the co-occurrence of panic and phobic disorders with joint laxity led to the identification of various forms of interstitial duplications involving human chromosome 15q24-q26 (named "DUP25") in a Spanish population. DUP25 was observed in 68 of 70 (97%) patients assigned the diagnosis panic disorder/agoraphobia. DUP25 was also found in 14 of 189 (7%) control individuals. In the present study, we replicated the experimental conditions described by Gratacòs and colleagues in which fluorescence in situ hybridization was used to examine metaphase chromosomes of patients with panic disorder/social phobia and of control individuals from a southern region of the United Kingdom, the primary aim being to determine the prevalence of this chromosomal rearrangement in a geographically and ethnically distinct population. DUP25 was not observed in any of our 16 patients or 40 control samples or in three previously reported DUP25-positive control (Centre d'Etude du Polymorphisme Humain) cell lines, indicating a highly significant difference in the frequency of DUP25 between the study by Gratacòs and colleagues and the present investigation

    FRAXA and FRAXE: the results of a five year survey

    No full text
    We report the results of a five year survey of FRAXA and FRAXE mutations among boys aged 5 to 18 with special educational needs (SEN) related to learning disability. We tested their mothers using the X chromosome not transmitted to the son as a control chromosome, and the X chromosome inherited by the son to provide information on stability of transmission. We tested 3738 boys and 2968 mothers and found 20 FRAXA and one FRAXE full mutations among the boys and none among the mothers. This gives an estimated prevalence of full mutations in males of 1 in 5530 for FRAXA and 1 in 23?423 for FRAXE.We found an excess of intermediate and premutation alleles for both FRAXA and FRAXE. For FRAXA this was significant at the 0.001 level but the excess for FRAXE was significant only at the 0.03 level. We conclude that the excess of intermediate and premutation sized alleles for FRAXA may well be a contributing factor to the boys' mental impairment, while that for FRAXE may be a chance finding. We studied approximately 3000 transmissions from mother to son and found five instabilities of FRAXA in the common or intermediate range and three instabilities of FRAXE in the intermediate range. Thus instabilities in trinucleotide repeat size for FRAXA and FRAXE are rare, especially among alleles in the common size range. <br/

    Stability and haplotype analysis of the FRAXE region

    No full text
    FRAXE full mutations are rare and appear to be associated with mild mental retardation. As part of a screening survey of boys with learning difficulties to determine the frequency of full and premutations, we have collected data on the frequency of instability at FRAXE for about 4000 transmissions and the haplotype for over 7000 chromosomes. The distribution of FRAXE repeats was similar to other English populations but differed from two North American Caucasian series. Observed instability at FRAXE was rare but increased with increasing repeat number, and there were no expansions into the full mutation range, except in pedigrees ascertained through a full mutation. Haplotype analysis suggested division into five groups with each group having a characteristic distribution of FRAXE repeats. Fourteen of the 15 full mutations occurred on a single haplotype and this haplotype also had a significant excess of intermediate-sized alleles, suggesting that full mutations originate from large normal alleles. However, a related haplotype also had a significant excess of intermediates but we observed no full mutations on this haplotype, suggesting either loss or gain of stability determinants on it. We suggest that whilst triplet repeat size is a significant predisposing factor for expansion at FRAXE other genetic determinants are also likely to be important. <br/

    Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders

    No full text
    Objectives: The frequency of abnormalities of 15q11-q13 and other possibly causal medical disorders including karyotypic abnormalities was investigated in an unselected series of children who were referred to one of two autism assessment centres.Methods: Two hundred and twenty-one cases were assessed using the Autism Diagnostic Interview and Observation Schedule and, where appropriate, standardized tests of intelligence and language abilities. Medical histories and notes were reviewed, and molecular and cytogenetic investigations used to detect chromosomal abnormalities.Results: One hundred and eighty-one cases were diagnosed according to International Classification of Diseases - version 10 criteria as having an autism spectrum disorder (autistic-like Pervasive Developmental Disorder) and 40 cases as having other disorders. Twenty-one (11.6%) of the children with autism spectrum disorders had a possibly causal condition compared with six (15%) of the children with other diagnoses. One child with an autism spectrum disorder had a paternally inherited familial duplication of 15q11-13. The pattern of genotype-phenotype correlation within the family indicated that this form of abnormality might carry a risk for developmental difficulties, although the risk did not appear to be specific for autism spectrum disorders.Conclusion: The overall rate of possibly causal medical and cytogenetic conditions in children with autism spectrum disorders was low and no different from the rate of disorder in children with other developmental/neuropsychiatric disorders that attended the same clinics. Further research is required to determine whether paternal duplication of 15q11-13 gives rise to adverse developmental outcomes

    Supernumerary marker chromosomes in man: parental origin, mosaicism and maternal age revisited

    No full text
    The details of all cytogenetic abnormalities diagnosed in the Wessex Regional Genetics Laboratory (WRGL) since 1967 to the present day have been recorded in the Salisbury Treasury of Interesting Chromosomes (STOIC). From this resource, we identified 137 patients with constitutional autosomal supernumerary marker chromosomes (SMC) ascertained in four principal groups: (i) 37% with abnormal phenotypes; (ii) 7% couples with reproductive difficulties; (iii) 47% antenatal diagnoses and (iv) 9% miscellaneous. Overall, 81 (59%) SMCs were mosaics and 56 (41%) nonmosaics. Of the 109 cases with known parental origins, 70% were de novo, 19% maternally and 11% paternally inherited. The chromosomal origins of 112/137 (82%) of the SMCs have been determined by fluorescence in situ hybridization (FISH). In all, 36/112 (32%) were derived from nonacrocentric autosomes, and 76/112 (68%) from the acrocentric autosomes 13/21, 14, 15 and 22. Of these acrocentric SMCs, 39 (51%) were derived from chromosome 15, so that SMC(15) constituted 39/112 (35%) of all SMCs with known chromosomal origins. The frequencies with which mosaicism was observed varied considerably according to the chromosomal origin of the SMCs and accounted for 8/39 (20%) SMC(15), 13/37 (35%) SMCs from other acrocentrics and 25/36 (69%) of nonacrocentric SMCs. The data were analysed for parental age effects, and only de novo SMC(15)s were found to be associated with a significantly increased maternal age

    Parental and chromosomal origins of microdeletion and duplication syndromes involving 7q11.23, 15q11-q13 and 22q11

    No full text
    Non-allelic homologous recombination between chromosome-specific LCRs is the most common mechanism leading to recurrent microdeletions and duplications. To look for locus-specific differences, we have used microsatellites to determine the parental and chromosomal origins of a large series of patients with de novo deletions of chromosome 7q11.23 (Williams syndrome), 15q11-q13 (Angelman syndrome, Prader-Willi syndrome) and 22q11 (Di George syndrome) and duplications of 15q11-q13. Overall the majority of rearrangements were interchromosomal, so arising from unequal meiotic exchange, and there were approximately equal numbers of maternal and paternal deletions. Duplications and deletions of 15q11-q13 appear to be reciprocal products that arise by the same mechanisms. The proportion arising from interchromosomal exchanges varied among deletions with 22q11 the highest and 15q11-q13 the lowest. However, parental and chromosomal origins were not always independent. For 15q11-q13, maternal deletions tended to be interchromosomal while paternal deletions tended to be intrachromosomal; for 22q11 there was a possible excess of maternal cases among intrachromosomal deletions. Several factors are likely to be involved in the formation of recurrent rearrangements and the relative importance of these appear to be locus-specific
    corecore