28 research outputs found
Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in vivo
Journal ArticleThe bacteriophage P22-based challenge phase selection was used to characterize the binding of Salmonella Hin recombinase to the wild-type hixL and hixR recombination sites, as well as to mutant and synthetic hix sequences in vivo. Hin recombinase binds to the hixL or hixR recombination sites and represses transcription from an upstream promoter in the challenge phage system
Catalases Are NAD(P)H-Dependent Tellurite Reductases
Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3) (2−)) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical
Triple Mutants Uncover Three New Genes Required for Social Motility in Myxococcus xanthus
The bacterium Myxococcus xanthus glides over surfaces using two different locomotive mechanisms, called S (social) and A (adventurous) motility that enable cells to move both as groups and as individuals. Neither mechanism involves flagella. The functions of these two motors are coordinated by the activity of a small Ras-like protein, encoded by the mglA gene. The results of previous studies of a second-site suppressor of the mglA-8 missense mutation masK-815 indicate that MglA interacts with a protein tyrosine kinase, MasK, to control social motility. Sequence analysis of the sites of 12 independent insertions of the transposon magellan-4 that result in the loss of motility in an M. xanthus mglA-8 masK-815 double mutant shows that nine of these 12 insertions are in genes known to be required for S gliding motility. This result confirms that the masK-815 suppressor restores S but not A motility. Three of the 12 insertions define three new genes required for S motility and show that the attachment of heptose to the lipopolysaccharide inner core, an ortholog of the CheR methyltransferase, and a large protein with YD repeat motifs, are required for S motility. When these three insertions are backcrossed into an otherwise wild-type genetic background, their recombinants are found to have defects in S, but not, A motility. The spectrum of magellan-4 insertions that lead to the loss of S motility in the mglA-8 masK-815 double mutant background is different than that resulting from a previous mutant hunt starting with a different (A mutant) genetic background, suggesting that the number of genes required for S motility in M. xanthus is quite large
Spontaneous mutations occur near dam recognition sites in a dam- Escherichia coli host
The mismatch repair system of Escherichia coli K12 removes mispaired bases from DNA. Mismatch repair can occur on either strand of DNA if it lacks N6-methyladenines within 5\u27-GATC-3\u27 sequences. In hemimethylated heteroduplexes, repair occurs preferentially on the unmethylated strand. If both strands are fully methylated, repair is inhibited. Mutant (dam-) strains of E. coli defective in the adenine methylase that recognizes 5\u27-GATC-3\u27 sequences (Dam), and therefore defective in mismatch repair, show increased spontaneous mutation rates compared to otherwise isogenic dam+ hosts. We have isolated and characterized 91 independent mutations that arise as a consequence of the Dam- defect in a plasmid-borne phage P22 repressor gene, mnt. The majority of these mutations are A:T----G:C transitions that occur within six base pairs of the two 5\u27-GATC-3\u27 sequences in the mnt gene. In contrast, the spectrum of mnt- mutations in a dam+ host is comprised of a majority of insertions of IS elements and deletions that do not cluster near Dam recognition sites. These results show that Dam-directed post-replicative mismatch repair plays a significant role in the rectification of potential transition mutations in vivo, and suggest that sequences associated with Dam recognition sites are particularly prone to replication or repair errors