106 research outputs found

    A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development

    Get PDF
    Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants

    A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers

    No full text
    Protein biomarkers are indicators of many diseases and are commonly used for disease diagnosis and prognosis prediction in the clinic. The urgent need for point-of-care (POC) detection of protein biomarkers has promoted the development of automated and fully sealed immunoassay platforms. In this study, a portable microfluidic system was established for the POC detection of multiple protein biomarkers by combining a protein microarray for a multiplex immunoassay and a microfluidic cassette for reagent storage and liquid manipulation. The entire procedure for the immunoassay was automatically conducted, which included the antibody–antigen reaction, washing and detection. Alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carcinoma antigen 125 (CA125) were simultaneously detected in this system within 40 min with limits of detection of 0.303 ng/mL, 1.870 ng/mL, and 18.617 U/mL, respectively. Five clinical samples were collected and tested, and the results show good correlations compared to those measured by the commercial instrument in the hospital. The immunoassay cassette system can function as a versatile platform for the rapid and sensitive multiplexed detection of biomarkers; therefore, it has great potential for POC diagnostics

    A robust registration method for autonomous driving pose estimation in urban dynamic environment using LiDAR

    Get PDF
    The registration of point clouds in urban environments faces problems such as dynamic vehicles and pedestrians, changeable road environments, and GPS inaccuracies. The state-of-the-art methodologies have usually combined the dynamic object tracking and/or static feature extraction data into a point cloud towards the solution of these problems. However, there is the occurrence of minor initial position errors due to these methodologies. In this paper, the authors propose a fast and robust registration method that exhibits no need for the detection of any dynamic and/or static objects. This proposed methodology may be able to adapt to higher initial errors. The initial steps of this methodology involved the optimization of the object segmentation under the application of a series of constraints. Based on this algorithm, a novel multi-layer nested RANSAC algorithmic framework is proposed to iteratively update the registration results. The robustness and efficiency of this algorithm is demonstrated on several high dynamic scenes of both short and long time intervals with varying initial offsets. A LiDAR odometry experiment was performed on the KITTI data set and our extracted urban data-set with a high dynamic urban road, and the average of the horizontal position errors was compared to the distance traveled that resulted in 0.45% and 0.55% respectively

    Lateral Impact Response of Concrete-Filled Square Steel Tubes with Local Defects

    No full text
    A numerical model of 84 high-strength concrete-filled square steel tubular columns (HSCFST) with local defects is developed using ABAQUS. The effects of parameters such as crack angle, crack length, impact surface and impact energy on the impact resistance of HSCFST columns are considered. The results show that under the effect of local corrosion, a model with horizontal cracks will show the phenomenon of crack closure when subjected to the front impact. The impact force platform value is mainly affected by the impact surface, followed by the crack angle, while the increase of the crack length mainly has a greater effect on the model of the rear impact. The impact resistance of the front impact model is better than that of the side and rear impact models. Increasing the crack length and decreasing the crack angle will increase the mid-span deflection of the model, and the mid-span deflection of the front impact model is smaller than that of the side and rear impact models. The energy absorption ratio of the model is proportional to the increase of the crack length and inversely proportional to the increase of the crack angle. Decreasing the crack angle will reduce the increase coefficient (Rd) of the dynamic flexural capacity of the model. A practical calculation method for the increased coefficient of the dynamic flexural capacity of HSCFST columns under local corrosion is proposed

    UB-LSTM: A Trajectory Prediction Method Combined with Vehicle Behavior Recognition

    Get PDF
    Β© 2020 Haipeng Xiao et al. In order to make an accurate prediction of vehicle trajectory in a dynamic environment, a Unidirectional and Bidirectional LSTM (UB-LSTM) vehicle trajectory prediction model combined with behavior recognition is proposed, and then an acceleration trajectory optimization algorithm is proposed. Firstly, the interactive information with the surrounding vehicles is obtained by calculation, then the vehicle behavior recognition model is established by using LSTM, and the vehicle information is input into the behavior recognition model to identify vehicle behavior. Then, the trajectory prediction model is established based on Unidirectional and Bidirectional LSTM, and the identified vehicle behavior and the input information of the behavior recognition model are input into the trajectory prediction model to predict the horizontal and vertical speed and coordinates of the vehicle in the next 3 seconds. Experiments are carried out with NGSIM data sets, and the experimental results show that the mean square error (MSE) between the predicted trajectory and the actual trajectory obtained by this method is 0.124, which is 97.2% lower than that of the method that does not consider vehicle behavior and directly predicts the trajectory. The test loss is 0.000497, which is 95.68% lower than that without considering vehicle behavior. The predicted trajectory is obviously optimized, closer to the actual trajectory, and the performance is more stable

    Trajectory Tracking of Autonomous Vehicle Using Clothoid Curve

    No full text
    This paper proposes a clothoid-curve-based trajectory tracking control method for autonomous vehicles to solve the problem of tracking errors caused by the discontinuous curvature of the control curve calculated by the pure pursuit tracking algorithm. Firstly, based on the Ackerman steering model, the motion model is constructed for vehicle trajectory tracking, Then, the position of the vehicle after the communication delay of the control system is predicted as the starting point of the clothoid control curve, and the optimization interval of the curve end point is determined. The clothoid control curves are calculated, and their parameters are verified by the vehicle motion and safety constraints, so as to obtain the optimal clothoid control curve satisfying the constraints. Finally, considering the servo system response delay time of the steering system, the steering angle target control value is obtained by previewing the curvature of the clothoid control curve. The field experiment is conducted on the test road, which consists of straight, right-angle turns and lane-change elements under three sets of speed limitations, and the test results show that the proposed clothoid-curve-based trajectory tracking control method greatly improved the tracking accuracy compared with the pure pursuit method; in particular, the yaw deviation is improved by more than 50%

    An Improved LSTM Model for Behavior Recognition of Intelligent Vehicles

    Get PDF
    Β© 2013 IEEE. Long Short-Term Memory (LSTM) neural network has been widely used in many applications, but its application in classification of vehicle movement patterns is still limited. In this paper, LSTM is applied to the vehicle behavior recognition problem to identify the left turn, right turn and straight behavior of the vehicle at the intersection. On the basis of the traditional LSTM classification model, this paper transversely merges the input features and then inputs into a LSTM cell to get an improved model. The improved model can make full use of the input information and reduce unnecessary calculations, and the output of a single LSTM cell model can filter out interference information and retain important information, so it has better classification effect and faster training speed. The experimental results show that the proposed improved LSTM network classification model in this paper has a significant improvement in recognition accuracy and training speed compared with the improved model, the accuracy is increased by 1.6%, and the training time is reduced by 3.96 s. In addition, this paper also applies the improved model to regression problems, emotion classification and handwritten digit recognition and all of them have a good improvement effect, which improves the applicability and stability of LSTM in classification problems and provides a new way to deal with classification problems

    A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system

    No full text
    Marburg virus (MARV) can cause lethal hemorrhagic fever in humans. Handling of MARV is restricted to high-containment biosafety level 4 (BSL-4) facilities, which greatly impedes research into this virus. In this study, a high titer of MARV pseudovirus was generated through optimization of the HIV backbone vectors, the ratio of backbone vector to MARV glycoprotein expression vector, and the transfection reagents. An in vitro neutralization assay and an in vivo bioluminescent imaging mouse model for MARV were developed based on the pseudovirus. Protective serum against MARV was successfully induced in guinea pigs, which showed high neutralization activity in vitro and could also protect Balb/c mice from MARV pseudovirus infection in vivo. This system could be a convenient tool to enable the evaluation of vaccines and therapeutic drugs against MARV in non-BSL-4 laboratories
    • …
    corecore