4,095 research outputs found

    Commutation Relations in Mesoscopic Electric Circuits

    Get PDF
    In the talk, I briefly demonstrate the quantum theory for mesoscopic electric circuits and its applications. In the theory, the importance of the charge discreteness in a mesoscopic electric circuit is addressed. As a result, a new kind of commutation relation for electric charge and current occurred inevitably. The charge representation, canonical current representation and pseudo-current representation are discussed extensively. It not only provides a concrete realization of mathematical models which discuss the space quantization in high energy physics and quantum gravity but also presents a sequence of applications in condensed matter physics from a different point of view. A possible generalization to coupled circuits is also proposed.Comment: 7 pages, talk at ``Spin-Statistics Connection and Commutation Relations'' Capri 200

    The effects of optically induced non-Abelian gauge field in cold atoms

    Full text link
    We show that N1N-1 degenerate dark states can be generated by coupling NN-fold degenerate ground states and a common excited state with NN laser fields. Interferences between light waves with different frequencies can produce laser fields with time-dependent amplitudes, which can induce not only U(N) non-Abelian vector fields but also the scalar ones for the adiabatic motion of atoms in such laser fields. As an example, a time-periodic gauge potential is produced by applying specific laser fields to a tripod system. Some features of the Landau levels and the ground-state phase diagram of a rotating Bose-Einstein condensate for a concrete gauge field are also discussed.Comment: Revtex 6 pages, 2 figures, version to be published in PR
    corecore