26,549 research outputs found
Calibrating dipolar interaction in an atomic condensate
We revisit the topic of a dipolar condensate with the recently derived more
rigorous pseudo-potential for dipole-dipole interaction [A. Derevianko, Phys.
Rev. A {\bf 67}, 033607 (2003)]. Based on the highly successful variational
technique, we find that all dipolar effects estimated before (using the bare
dipole-dipole interaction) become significantly larger, i.e. are amplified by
the new velocity-dependent pseudo-potential, especially in the limit of large
or small trap aspect ratios. This result points to a promising prospect for
detecting dipolar effects inside an atomic condensate.Comment: 5 figures, to be publishe
Identification of the Sequence of Steps Intrinsic to Spheromak Formation
A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows
Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain
In this paper, we show that we can apply probabilistic spatiotemporal
macroblock filtering (PSMF) and partial decoding processes to effectively
detect and track multiple objects in real time in H.264|AVC bitstreams with
stationary background. Our contribution is that our method cannot only show
fast processing time but also handle multiple moving objects that are
articulated, changing in size or internally have monotonous color, even though
they contain a chaotic set of non-homogeneous motion vectors inside. In
addition, our partial decoding process for H.264|AVC bitstreams enables to
improve the accuracy of object trajectories and overcome long occlusion by
using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200
- …