1,377 research outputs found

    Bandwidth allocation and pricing problem for a duopoly market

    Get PDF
    This research discusses the Internet service provider (ISP) bandwidth allocation and pricing problems for a duopoly bandwidth market with two competitive ISPs. According to the contracts between Internet subscribers and ISPs, Internet subscribers can enjoy their services up to their contracted bandwidth limits. However, in reality, many subscribers may experience the facts that their on-line requests are denied or their connection speeds are far below their contracted speed limits. One of the reasons is that ISPs accept too many subscribers as their subscribers. To avoid this problem, ISPs can set limits for their subscribers to enhance their service qualities. This paper develops constrained nonlinear programming to deal with this problem for two competitive ISPs. The condition for reaching the equilibrium between the two competitive firms is derived. The market equilibrium price and bandwidth resource allocations are derived as closed form solutions

    Cavity locking with spatial modulation of optical phase front for laser stabilization

    Full text link
    We study optical cavity locking for laser stabilization through spatial modulation of the phase front of a light beam. A theoretical description of the underlying principle is developed for this method and special attention is paid to residual amplitude modulation (RAM) caused by experimental imperfections, especially the manufacture errors of the spatial phase modulator. The studied locking method owns the common advantages of the Pound-Drever-Hall method and the tilt-locking one, and it can provide a more artful way to eliminate RAM noise in phase modulation for the ultimate stability of lasers. In situations where cost and portability are a practical issue, the studied method allows one to realize compact laser stabilization systems locked to Fabry-P\acute{\mbox{e}}rot cavities without use of expensive bulky devices, such as signal generators and electro-optic modulators.Comment: 3 figure

    Accurate Prediction of Antibody Function and Structure Using Bio-Inspired Antibody Language Model

    Full text link
    In recent decades, antibodies have emerged as indispensable therapeutics for combating diseases, particularly viral infections. However, their development has been hindered by limited structural information and labor-intensive engineering processes. Fortunately, significant advancements in deep learning methods have facilitated the precise prediction of protein structure and function by leveraging co-evolution information from homologous proteins. Despite these advances, predicting the conformation of antibodies remains challenging due to their unique evolution and the high flexibility of their antigen-binding regions. Here, to address this challenge, we present the Bio-inspired Antibody Language Model (BALM). This model is trained on a vast dataset comprising 336 million 40% non-redundant unlabeled antibody sequences, capturing both unique and conserved properties specific to antibodies. Notably, BALM showcases exceptional performance across four antigen-binding prediction tasks. Moreover, we introduce BALMFold, an end-to-end method derived from BALM, capable of swiftly predicting full atomic antibody structures from individual sequences. Remarkably, BALMFold outperforms those well-established methods like AlphaFold2, IgFold, ESMFold, and OmegaFold in the antibody benchmark, demonstrating significant potential to advance innovative engineering and streamline therapeutic antibody development by reducing the need for unnecessary trials

    High speed self-testing quantum random number generation without detection loophole

    Full text link
    Quantum mechanics provides means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a self-testing manner that is independent of implementation devices. Here, we present an experimental demonstration of self-testing quantum random number generation based on an detection-loophole free Bell test with entangled photons. In the randomness analysis, without the assumption of independent identical distribution, we consider the worst case scenario that the adversary launches the most powerful attacks against quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×\times 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10510^{-5}. Such self-testing random number generators mark a critical step towards realistic applications in cryptography and fundamental physics tests.Comment: 34 pages, 10 figure

    Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD

    Full text link
    Due to the enhancement of the couplings between Higgs boson and bottom quarks in the minimal sypersymmetric standard model (MSSM), the cross section of the process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be considerably enhanced. We investigated the production of Higgs boson associated with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO) QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen parameter space.Comment: accepted by Phys. Rev.

    High-speed measurement-device-independent quantum key distribution with integrated silicon photonics

    Full text link
    Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive measurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25 GHz silicon photonic chip-based MDI-QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of 31 bps over 36 dB channel loss (or 180 km standard fiber). This key rate is higher than state-of-the-art MDI-QKD experiments. The results show that silicon photonic chip-based MDI-QKD, benefiting from miniaturization, low-cost manufacture and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks.Comment: 30 pages, 12 figure

    Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders

    Full text link
    We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for the associated production of a pseudoscalar Higgs boson with a bottom quark via bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We find that the NLO QCD correction in the MSSM reaches 4040%\sim50% at the LHC and 4545%\sim80% at the Tevatron in our chosen parameter space
    corecore