20,366 research outputs found

    The differential graded odd nilHecke algebra

    Full text link
    We equip the odd nilHecke algebra and its associated thick calculus category with digrammatically local differentials. The resulting differential graded Grothendieck groups are isomorphic to two different forms of the positive part of quantum sl(2) at a fourth root of unity.Comment: 53 page

    Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit

    Full text link
    Subspace clustering methods based on â„“1\ell_1, â„“2\ell_2 or nuclear norm regularization have become very popular due to their simplicity, theoretical guarantees and empirical success. However, the choice of the regularizer can greatly impact both theory and practice. For instance, â„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad conditions (e.g., arbitrary subspaces and corrupted data). However, it requires solving a large scale convex optimization problem. On the other hand, â„“2\ell_2 and nuclear norm regularization provide efficient closed form solutions, but require very strong assumptions to guarantee a subspace-preserving affinity, e.g., independent subspaces and uncorrupted data. In this paper we study a subspace clustering method based on orthogonal matching pursuit. We show that the method is both computationally efficient and guaranteed to give a subspace-preserving affinity under broad conditions. Experiments on synthetic data verify our theoretical analysis, and applications in handwritten digit and face clustering show that our approach achieves the best trade off between accuracy and efficiency.Comment: 13 pages, 1 figure, 2 tables. Accepted to CVPR 2016 as an oral presentatio

    Quantum duality under the theta-exact Seiberg-Witten map

    Get PDF
    We show that in the perturbative regime defined by the coupling constant, the theta-exact Seiberg-Witten map applied to noncommutative U(N) Yang-Mills --with or without Supersymmetry-- gives an ordinary gauge theory which is, at the quantum level, dual to the former. We do so by using the on-shell DeWitt effective action and dimensional regularization. We explicitly compute the one-loop two-point function contribution to the on-shell DeWitt effective action of the ordinary U(1) theory furnished by the theta-exact Seiberg-Witten map. We find that the non-local UV divergences found in the propagator in the Feynman gauge all but disappear, so that they are not physically relevant. We also show that the quadratic noncommutative IR divergences are gauge-fixing independent and go away in the Supersymmetric version of the U(1) theory.Comment: 47 pages, 21 figures. Version published in JHEP under the reference: JHEP09(2016)05

    Provable Self-Representation Based Outlier Detection in a Union of Subspaces

    Full text link
    Many computer vision tasks involve processing large amounts of data contaminated by outliers, which need to be detected and rejected. While outlier detection methods based on robust statistics have existed for decades, only recently have methods based on sparse and low-rank representation been developed along with guarantees of correct outlier detection when the inliers lie in one or more low-dimensional subspaces. This paper proposes a new outlier detection method that combines tools from sparse representation with random walks on a graph. By exploiting the property that data points can be expressed as sparse linear combinations of each other, we obtain an asymmetric affinity matrix among data points, which we use to construct a weighted directed graph. By defining a suitable Markov Chain from this graph, we establish a connection between inliers/outliers and essential/inessential states of the Markov chain, which allows us to detect outliers by using random walks. We provide a theoretical analysis that justifies the correctness of our method under geometric and connectivity assumptions. Experimental results on image databases demonstrate its superiority with respect to state-of-the-art sparse and low-rank outlier detection methods.Comment: 16 pages. CVPR 2017 spotlight oral presentatio

    Quantum noncommutative ABJM theory: first steps

    Get PDF
    We introduce ABJM quantum field theory in the noncommutative spacetime by using the component formalism and show that it is N=6 supersymmetric. For the U(1)_{\kappa} x U(1)_{-\kappa} case, we compute all one-loop 1PI two and three point functions in the Landau gauge and show that they are UV finite and have well-defined commutative limits theta^{\mu\nu} -> 0, corresponding exactly to the 1PI functions of the ordinary ABJM field theory. This result also holds for all one-loop functions which are UV finite by power counting. It seems that the quantum noncommutative ABJM field theory is free from the noncommutative IR instabilities.Comment: 43 pages and 25 figures, corrected trivial typos, misprints, misplaced symbols et

    Super Yang-Mills and theta-exact Seiberg-Witten map: Absence of quadratic noncommutative IR divergences

    Get PDF
    We compute the one-loop 1PI contributions to all the propagators of the noncommutative N=1, 2, 4 super Yang-Mills (SYM) U(1) theories defined by the means of the theta-exact Seiberg-Witten (SW) map in the Wess-Zumino gauge. Then we extract the UV divergent contributions and the noncommutative IR divergences. We show that all the quadratic noncommutative IR divergences add up to zero in each propagator.Comment: 55 pages, 53 figures, version published in JHE

    Rigorous Proof of Pseudospin Ferromagnetism in Two-Component Bosonic Systems with Component-Independent Interactions

    Full text link
    For a two-component bosonic system, the components can be mapped onto a pseudo-spin degree of freedom with spin quantum number S=1/2. We provide a rigorous proof that for a wide-range of real Hamiltonians with component independent mass and interaction, the ground state is a ferromagnetic state with pseudospin fully polarized. The spin-wave excitations are studied and found to have quadratic dispersion relations at long wave length.Comment: 4 pages, no figur

    Intra-organizational integration and innovation: organizational structure, environmental contingency and R&D performance

    Get PDF
    It is widely thought that intra-firm integration has a positive effect on organizational performance, especially in environments characterized by complex and uncertain information. However, counter arguments suggest that integration may limit flexibility and thereby reduce performance in the face of uncertainty. Research and development activities of a firm are especially likely to face complex and uncertain information environments. Following prior work in contingency theory, this paper analyzes the effects of intra-organizational integration on manufacturing firms’ innovative performance. Based on a survey of R&D units in US manufacturing firms and patent data from the NBER patent database, we examine the relation between mechanisms for linking R&D to other units of the firm and the relative innovativeness of the firm. Furthermore, we argue that the impact of integration may vary by the importance of secrecy in protecting firms’ innovation advantages. We find that intra-firm integration is associated with higher self-reported innovativeness and more patents. We also find some evidence that this effect is moderated by the appropriability regime the firm faces, with the benefits of cross-functional integration being weaker in industries where secrecy is especially important. These results both support and develop the contingency model of organizational performance.Innovation; Organizations; Contingency theory;
    • …
    corecore