8,713 research outputs found
Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout
To implement quantum information processing, microwave fields are often used
to manipulate superconuducting qubits. We study how the coupling between
superconducting charge qubits can be controlled by variable-frequency magnetic
fields. We also study the effects of the microwave fields on the readout of the
charge-qubit states. The measurement of the charge-qubit states can be used to
demonstrate the statistical properties of photons.Comment: 7 pages, 3 figure
Hybridized solid-state qubit in the charge-flux regime
Most superconducting qubits operate in a regime dominated by either the
electrical charge or the magnetic flux. Here we study an intermediate case: a
hybridized charge-flux qubit with a third Josephson junction (JJ) added into
the SQUID loop of the Cooper-pair box. This additional JJ allows the optimal
design of a low-decoherence qubit. Both charge and flux noises are
considered. Moreover, we show that an efficient quantum measurement of either
the current or the charge can be achieved by using different area sizes for the
third JJ.Comment: 7 pages, 5 figures. Phys. Rev. B, in pres
Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes
Charge fluctuations from gate bias and background traps severely limit the
performance of a charge qubit in a Cooper-pair box (CPB). Here we present an
experimentally realizable method to control the decoherence effects of these
charge fluctuations using two strongly capacitively coupled CPBs. This
coupled-box system has a low-decoherence subspace of two states. Our results
show that the inter-box Coulomb correlation can help significantly suppress
decoherence of this two-level system, making it a promising candidate as a
logical qubit, encoded using two CPBs.Comment: 5 pages, 2 figures. Phys. Rev. B, in pres
Switchable coupling between charge and flux qubits
We propose a hybrid quantum circuit with both charge and flux qubits
connected to a large Josephson junction that gives rise to an effective
inter-qubit coupling controlled by the external magnetic flux. This switchable
inter-qubit coupling can be used to transfer back and forth an arbitrary
superposition state between the charge qubit and the flux qubit working at the
optimal point. The proposed hybrid circuit provides a promising quantum memory
because the flux qubit at the optimal point can store the tranferred quantum
state for a relatively long time.Comment: 5 pages, 1 figur
Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit
We analyze the optical selection rules of the microwave-assisted transitions
in a flux qubit superconducting quantum circuit (SQC). We show that the
parities of the states relevant to the superconducting phase in the SQC are
well-defined when the external magnetic flux , then the
selection rules are same as the ones for the electric-dipole transitions in
usual atoms. When , the symmetry of the potential of
the artificial "atom'' is broken, a so-called -type "cyclic"
three-level atom is formed, where one- and two-photon processes can coexist. We
study how the population of these three states can be selectively transferred
by adiabatically controlling the electromagnetic field pulses. Different from
-type atoms, the adiabatic population transfer in our three-level
-atom can be controlled not only by the amplitudes but also by the
phases of the pulses
- …