3,851 research outputs found

    Modeling the underlying mechanisms for organic memory devices: Tunneling, electron emission and oxygen adsorbing

    Full text link
    We present a combined experimental and theoretical study to get insight into both memory and negative differential resistance (NDR) effect in organic memory devices. The theoretical model we propose is simply a one-dimensional metallic island array embedding within two electrodes. We use scattering operator method to evaluate the tunneling current among the electrode and islands to establish the basic bistable I-V curves for several devices. The theoretical results match the experiments very well, and both memory and NDR effect could be understood comprehensively. The experimental correspondence, say, the experiment of changing the pressure of oxygen, is addressed as well.Comment: 5 pages, 3 figure

    Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although increasing evidence has indicated that brain insulin dysfunction is a risk factor for Alzheimer disease (AD), the underlying mechanisms by which insulin deficiency may impact the development of AD are still obscure. Using a streptozotocin (STZ)-induced insulin deficient diabetic AD transgenic mouse model, we evaluated the effect of insulin deficiency on AD-like behavior and neuropathology.</p> <p>Results</p> <p>Our data showed that administration of STZ increased the level of blood glucose and reduced the level of serum insulin, and further decreased the phosphorylation levels of insulin receptors, and increased the activities of glycogen synthase kinase-3α/β and c-Jun N-terminal kinase in the APP/PS1 mouse brain. We further showed that STZ treatment promoted the processing of amyloid-β (Aβ) precursor protein resulting in increased Aβ generation, neuritic plaque formation, and spatial memory deficits in transgenic mice.</p> <p>Conclusions</p> <p>Our present data indicate that there is a close link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.</p

    Observation of quantum fingerprinting beating the classical limit

    Get PDF
    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the information transmitted over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report an experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultra-low noise superconducting single-photon detectors and a stable fibre-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fibre for input sizes of up to two Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.Comment: 19 pages, 4 figure

    Measurement-device-independent quantum key distribution over untrustful metropolitan network

    Full text link
    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure
    • …
    corecore