2 research outputs found

    Timing and structure of the Younger Dryas event in northern China

    No full text
    A high-resolution and absolute-dated stalagmite record from Kulishu Cave, Beijing characterizes Asian Monsoon (AM) history in northern China between ca 14 and 10.5 ka BP (thousand yrs before present, present = 1950), including the entire Younger Dryas (YD) event. Using Th-230 dates and counting of annual-layers, the shift into the YD began at 12,850 +/- 40 yr BP and took similar to 340 yrs and the shift out of the YD began at 11,560 +/- 40 yr BP and took &lt;38 yrs (best estimate similar to 20 yrs), broadly similar to previously reported AM records from central and southeastern China. The more gradual nature of the start of the YD event as observed in the AM records appears to contrast with the more abrupt beginning observed in the Greenland ice records. The total amplitude of the AM YD event is also smaller than the amplitude of the AM Heinrich Stadial 1 event. In addition, the general rising trend of the AM during the Bolling-Allerod period contrasts with the general cooling trend in Greenland temperature during that time. The influence of rising insolation on the AM may explain this observation.</p

    Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    No full text
    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048-1079 and AD 1838-2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830-1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem.</p
    corecore