634 research outputs found
Electrical control of spin dynamics in finite one-dimensional systems
We investigate the possibility of the electrical control of spin transfer in
monoatomic chains incorporating spin-impurities. Our theoretical framework is
the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in
the spirit of the s-d-model, where the itinerant electrons are described by a
tight-binding model while localized spins are treated classically. Our main
focus is on the dynamical exchange interaction between two well-separated
spins. This can be quantified by the transfer of excitations in the form of
transverse spin oscillations. We systematically study the effect of an
electrostatic gate bias V_g on the interconnecting channel and we map out the
long-range dynamical spin transfer as a function of V_g. We identify regions of
V_g giving rise to significant amplification of the spin transmission at low
frequencies and relate this to the electronic structure of the channel.Comment: 9 pages, 11 figure
Chain Formation by Spin Pentamers in eta-Na9V14O35
The nature of the gapped ground state in the quasi-one-dimensional compound
eta-Na9V14O35 cannot easily be understood, if one takes into account the odd
number of spins on each structural element. Combining the results of specific
heat, susceptibility and electron spin resonance measurements we show that
eta-Na9V14O35 exhibits a novel ground state where multi-spin objects build up a
linear chain. These objects - pentamers - consist of five antiferromagnetically
arranged spins with effective spin 1/2. Their spatial extent results in an
exchange constant along the chain direction comparable to the one in the
high-temperature state.Comment: 6 pages, 5 figure
Critical Crossover Between Yosida-Kondo Dominant Regime and Magnetic Frustration Dominant Regime in the System of a Magnetic Trimer on a Metal Surface
Quantum Monte Carlo simulations were carried out for the system of a magnetic
trimer on a metal surface. The magnetic trimer is arranged in two geometric
configurations, viz., isosceles and equilateral triangles. The calculated
spectral density and magnetic susceptibility show the existence of two phases:
Yosida-Kondo dominant phase and magnetic frustration dominant phase.
Furthermore, a critical transition between these two phases can be induced by
changing the configuration of the magnetic trimers from isosceles to
equilateral triangle.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. Soc. Jp
Indirect RKKY interaction in any dimensionality
We present an analytical method which enables one to find the exact spatial
dependence of the indirect RKKY interaction between the localized moments via
the conduction electrons for the arbitrary dimensionality . The
corresponding momentum dependence of the Lindhard function is exactly found for
any as well. Demonstrating the capability of the method we find the RKKY
interaction in a system of metallic layers weakly hybridized to each other.
Along with usual in-plane oscillations the RKKY interaction has the
sign-reversal character in a direction perpendicular to layers, thus favoring
the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.
Giant Extrinsic Spin Hall Effect due to Rare-Earth Impurities
We investigate the extrinsic spin Hall effect in the electron gas model due
to magnetic impurities, by focusing on Ce- and Yb-impurities. In the dilute
limit, the skew scattering term dominates the side jump term. For
Ce-impurities, the spin Hall angle due to skew scattering is
given by , where is the phase shift
for partial wave. Since reaches if
\delta_2 \simge 0.03, the spin Hall effect is anticipated to be considerable
in metals with rare-earth impurities. The giant extrinsic SHE originates from
the large orbital angular momentum, which is also significant for the intrinsic
SHE.Comment: 5 pages, 3 figures, to be published in New Journal of Physic
From Kondo Effect to Fermi Liquid
The Kondo effect has been playing an important role in strongly correlated
electon systems. The important point is that the magnetic impurity in metals is
a typical example of the Fermi liquid. In the system the local spin is
conserved in the ground state and continuity with respect to Coulomb repulsion
is satisfied. This nature is satisfied also in the periodic systems as far
as the systems remain as the Fermi liquid. This property of the Fermi liquid is
essential to understand the cuprate high-Tc superconductors (HTSC). On the
basis of the Fermi liquid theory we develop the transport theory such as the
resistivity and the Hall coefficient in strongly correlated electron systems,
such as HTSC, organic metals and heavy Fermion systems. The significant role of
the vertex corrections for total charge- and heat-currents on the transport
phenomena is explained. By taking the effect of the current vertex corrections
into account, various typical non-Fermi-liquid-like transport phenomena in
systems with strong magnetic and/or superconducting flucutations are explained
within the Fermi liquid theory.Comment: 14 pages, an article for the special edition of JPSJ "Kondo Effect --
40 Years after the Discovery
Thermally-induced magnetic phases in an Ising spin Kondo lattice model on a kagome lattice at 1/3-filling
Numerical investigation on the thermodynamic properties of an Ising spin
Kondo lattice model on a kagome lattice is reported. By using Monte Carlo
simulation, we investigated the magnetic phases at 1/3-filling. We identified
two successive transitions from high-temperature paramagnetic state to a
Kosterlitz-Thouless-like phase in an intermediate temperature range and to a
partially disordered phase at a lower temperature. The partially disordered
state is characterized by coexistence of antiferromagnetic hexagons and
paramagnetic sites with period . We compare the results
with those for the triangular lattice case.Comment: 4 pages, 2 figure
Dynamic properties of the spin-1/2 XY chain with three-site interactions
We consider a spin-1/2 XY chain in a transverse (z) field with multi-site
interactions. The additional terms introduced into the Hamiltonian involve
products of spin components related to three adjacent sites. A Jordan-Wigner
transformation leads to a simple bilinear Fermi form for the resulting
Hamiltonian and hence the spin model admits a rigorous analysis. We point out
the close relationships between several variants of the model which were
discussed separately in previous studies. The ground-state phases (ferromagnet
and two kinds of spin liquid) of the model are reflected in the dynamic
structure factors of the spin chains, which are the main focus in this study.
First we consider the zz dynamic structure factor reporting for this quantity a
closed-form expression and analyzing the properties of the two-fermion
(particle-hole) excitation continuum which governs the dynamics of transverse
spin component fluctuations and of some other local operator fluctuations. Then
we examine the xx dynamic structure factor which is governed by many-fermion
excitations, reporting both analytical and numerical results. We discuss some
easily recognized features of the dynamic structure factors which are
signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure
Sobolev Inequalities for Differential Forms and -cohomology
We study the relation between Sobolev inequalities for differential forms on
a Riemannian manifold and the -cohomology of that manifold.
The -cohomology of is defined to be the quotient of the space
of closed differential forms in modulo the exact forms which are
exterior differentials of forms in .Comment: This paper has appeared in the Journal of Geometric Analysis, (only
minor changes have been made since verion 1
Ground-State Properties of Extended Two-Channel Kondo Model
Ground-state properties are examined for an extended two-channel Kondo model
where the Hilbert space of the localized states is extended to include a
singlet state in addition to the doublet states. By means of zero-th order
variational wavefunctions with different symmetries, which are associated with
the non-Fermi-liquid and the Fermi-liquid ground states, we demonstrate that
the channel exchange coupling via the localized singlet state stabilizes the
Fermi-liquid wavefunction. The ground-state phase diagrams, which are in
qualitative agreement with the previous study performed by Koga and Shiba, are
obtained. The comparison to the structure of the resultant wavefunctions
suggests that a unique non-Fermi-liquid (Fermi-liquid) fixed point exists,
irrespective of the localized ground state.Comment: 4 pages(3 figures), LaTeX, appear in J. Phys. Soc. Jpn Vol. 67 No.
- …