25 research outputs found

    Dynamic Trend of Myocardial Edema in Takotsubo Syndrome: A Serial Cardiac Magnetic Resonance Study

    Full text link
    BACKGROUND The wall motion abnormalities of the left ventricle (LV) in takotsubo syndrome (TTS) are known to be transient and completely recover within a few weeks. However, there is little information about the relationship between functional recovery and tissue characteristics. The aim of this study was to investigate the recovery process of TTS using cardiovascular magnetic resonance (CMR). METHODS Consecutive patients with TTS were prospectively enrolled. We performed serial CMR in the acute phase (<72 h after admission), the subacute phase (7-10 days after admission) and the chronic phase (3 months later). To assess the degree of myocardial edema quantitatively, we evaluated the signal intensity of myocardium on T2-weighted images and calculated the signal intensity ratio compared with the skeletal muscle. RESULTS Fifteen patients with TTS were enrolled. CMR demonstrated reduced LV ejection fraction in the acute phase, and it recovered almost completely by the subacute phase. On the other hand, severe myocardial edema was still observed in the subacute phase, associated with increased LV mass. The highest signal intensity ratio in the subacute phase was correlated with the maximum voltage of negative T wave on electrocardiogram (r = 0.57, p = 0.03). CONCLUSIONS In patients with TTS, myocardial edema associated with increased LV mass still remained in the subacute phase despite functional recovery of the LV. Electrocardiogram may be useful to assess the degree of myocardial edema in the subacute phase. Our study suggests that myocardial ischemia might have a central role in developing TTS

    GND-PCA-Based Statistical Modeling of Diaphragm Motion Extracted from 4D MRI

    Get PDF
    We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples

    Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source

    No full text
    Abstract Background The point spread function (PSF) of positron emission tomography (PET) depends on the position across the field of view (FOV). Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Methods We used Discovery 600 and Discovery 710 (GE Healthcare) PET scanners and traceable point-like 22Na sources (<1 MBq) with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D)-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP), the ordered subset expectation maximization (OSEM), OSEM + PSF, and OSEM + PSF + time-of-flight (TOF). Full width at half maximum (FWHM) was determined according to the NEMA method, and total counts in regions of interest (ROI) for each reconstruction were quantified. Results The radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable. Conclusions The traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the position. The quantitative accuracy over the entire FOV of the PET system is good, regardless of the reconstruction methods, although it depends slightly on the position

    White Matter Features Associated With Autistic Traits in Obsessive-Compulsive Disorder

    No full text
    Obsessive-compulsive disorder (OCD) is among the most debilitating psychiatric disorders. Comorbid autism spectrum disorder (ASD) or autistic traits may impair treatment response in OCD. To identify possible neurostructural deficits underlying autistic traits, we performed white matter tractography on diffusion tensor images (DTI) and assessed autistic trait severity using the Autism-Spectrum Quotient (AQ) in 33 OCD patients. Correlations between AQ and the DTI parameters, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were examined in major white matter tracts that were suggested to be altered in previous OCD studies. We found a negative correlation between AQ and FA and positive correlations between AQ and MD, AD and RD in the left uncinate fasciculus using age, Beck Depression Inventory, Yale-Brown Obsessive-Compulsive Scale, intelligence quotient and medication as covariates. However, we could not detect the significant results between AQ and all DTI parameters when adding gender as a covariate. In addition, in the ASD comorbid group, FA in the left uncinate fasciculus was significantly lower than in the non-ASD comorbid group and MD and RD were significantly higher than in the non-ASD group. These results did not survive correction for multiple comparisons. In ASD, the socio-emotional dysfunction is suggested to be related to the alteration of white matter microstructure in uncinate fasciculus. Our results suggest that variations in white matter features of the left uncinate fasciculus might be partly explained by autistic traits encountered in OCD patients

    Atypical social cognition processing in bulimia nervosa: an fMRI study of patients thinking of others’ mental states

    No full text
    Abstract Background Feeding and eating disorders are severe mental disorders that gravely affect patients’ lives. In particular, patients with anorexia nervosa (AN) or bulimia nervosa (BN) appear to have poor social cognition. Many studies have shown the relationship between poor social cognition and brain responses in AN. However, few studies have examined the relationship between social cognition and BN. Therefore, we examined which brain regions impact the ability for social cognition in patients with BN. Methods We used task-based functional magnetic resonance imaging (fMRI) to examine brain responses during a social cognition task and the Reading Mind in the Eyes Test (RMET). During the fMRI, 22 women with BN and 22 healthy women (HW) took the RMET. Participants also completed the eating disorder clinical measures Bulimic Investigatory Test, Edinburgh (BITE) and Eating Disorders Examination Questionnaire (EDE-Q), the Patient Health Questionnaire (PHQ-9) measure of depression; and the Generalized Anxiety Disorder (GAD-7) measure of anxiety. Results No difference was observed in the RMET scores between women with BN and HW. Both groups showed activation in brain regions specific to social cognition. During the task, no differences were shown between the groups in the BOLD signal (p < 0.05, familywise error corrected for multiple comparisons). However, there was a tendency of more robust activation in the right angular gyrus, ventral diencephalon, thalamus proper, temporal pole, and middle temporal gyrus in BN (p < 0.001, uncorrected for multiple comparisons). Moreover, HW showed a positive correlation between RMET scores and the activation of two regions: medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC); however, no significant correlation was observed in women with BN. Conclusions While activation in the mPFC and ACC positively correlated to the RMET scores in HW, no correlation was observed in BN patients. Therefore, women with BN might display modulated neural processing when thinking of others’ mental states. Further examination is needed to investigate neural processing in BN patients to better understand their social cognition abilities. Trial registration UMIN, UMIN000010220. Registered 13 March 2013, https://rctportal.niph.go.jp/s/detail/um?trial_id=UMIN00001022

    Leg position effects on the femoral neurovascular bundle location during a direct anterior approach total hip arthroplasty: a radiographic study

    No full text
    Abstract Background Femoral neurovascular injury is a serious complication in a direct anterior approach (DAA) total hip arthroplasty. However, dynamic neurovascular bundle location changes during the approach were not examined. Thus, this study aimed to analyze the effects of leg position on the femoral neurovascular bundle location using magnetic resonance imaging (MRI). Methods This study scanned 30 healthy volunteers (15 males and 15 females) with 3.0T MRI in a supine and 30-degree hip extension position with the left leg in a neutral rotation position and the right leg in a 45-degree external extension position. The minimum distance from the edge of the anterior acetabulum to the femoral nerve (dFN), artery, and vein were measured on axial T1-weighted images at the hip center level, as well as the angle to the horizontal line of the femoral nerve (aFN), artery (aFA), and vein from the anterior acetabulum. Results The dFN in the supine position with external rotation was significantly larger than supine with neutral and extension with external rotation position (20.7, 19.5, and 19.0; p = 0.031 and 0.012, respectively). The aFA in supine with external rotation was significantly larger than in other postures (52.4°, 34.2°, and 36.2°, p < 0.001, respectively). The aFV in supine with external rotation was significantly larger than in supine with a neutral position (52.3° versus 47.7°, p = 0.037). The aFN in supine and external rotation was significantly larger than other postures (54.6, 38.2, and 33.0, p < 0.001, respectively). Conclusions This radiographic study revealed that the leg position affected the neurovascular bundle location. These movements can be the risk of direct neurovascular injury or traction

    Reduced Field-of-View Diffusion Tensor Imaging of the Spinal Cord Shows Motor Dysfunction of the Lower Extremities in Patients With Cervical Compression Myelopathy.

    No full text
    STUDY DESIGN: A cross-sectional study.OBJECTIVE: The aim of this study was to quantify spinal cord dysfunction at the tract level in patients with cervical compressive myelopathy (CCM) using reduced field-of-view (rFOV) diffusion tensor imaging (DTI).SUMMARY OF BACKGROUND DATA: Although magnetic resonance imaging (MRI) is the standard used for radiological evaluation of CCM, information acquired by MRI does not necessarily reflect the severity of spinal cord disorder. There is a growing interest in developing imaging methods to quantify spinal cord dysfunction. To acquire high-resolution DTI, a new scheme using rFOV has been proposed.METHODS: We enrolled 10 healthy volunteers and 20 patients with CCM in this study. The participants were studied using a 3.0-T MRI system. For DTI acquisitions, diffusion-weighted spin-echo rFOV single-shot echo-planar imaging was used. Regions-of-interest (ROI) for the lateral column (LC) and posterior column (PC) tracts were determined on the basis of a map of fractional anisotropy (FA) of the spinal cord and FA values were measured. The FA of patients with CCM was compared with that of healthy controls and correlated with Japanese Orthopaedic Association (JOA) score.RESULTS: In LC and PC tracts, FA values in patients with CCM were significantly lower than in healthy volunteers. Total JOA scores correlated moderately with FA in LC and PC tracts. JOA subscores for motor dysfunction of the lower extremities correlated strongly with FA in LC and PC tracts.CONCLUSION: It is feasible to evaluate the cervical spinal cord at the tract level using rFOV DTI. Although FA values at the maximum compression level were not well correlated with total JOA scores, they were strongly correlated with JOA subscores for motor dysfunction of the lower extremities. Our findings suggest that FA reflects white matter dysfunction below the maximum compression level and FA can be used as an imaging biomarker of spinal cord dysfunction
    corecore