12 research outputs found

    Colony Assay for Antibody Library Screening: Outlook and Comparison to Display Screening

    Get PDF
    Recombinant monoclonal antibodies are established by screening the antibody libraries. To obtain antibodies with a high specificity and affinity, an efficient screening process with a highly diverse library including low background signals is necessary. One of the most extensively used methods is the phage display method. Although phage display screening is a powerful tool for enriching clones from vast libraries, it is not easy to identify single clones with an antigen recognition function only through several rounds of biopanning. The application of colony assays for screening antibody libraries can identify clones with a high reliability by a direct observation of the antibody-antigen binding during the screening process; however, the size of the library that can be dealt with is limited. This chapter describes the colony assay as a current screening technology used in recombinant monoclonal antibody production, the possible problems in this method, and discusses the outlook for this technology

    Screening Antibody Libraries with Colony Assay Using scFv-Alkaline Phosphatase Fusion Proteins

    No full text
    Screening antibody libraries is an important step in establishing recombinant monoclonal antibodies. The colony assay can identify positive clones without almost any false-positives; however, its antibody library is smaller than those used in other recombinant screening methods such as phage display. Thus, to improve the efficiency of colony assays, it is necessary to increase library size per screening. Here, we report developing a colony assay with single-chain variable fragment (scFv) fused to the N-terminus of bacterial alkaline phosphatase (scFv-PhoA). The scFv-PhoA library was constructed in an expression vector specifically designed for this study. Use of this library allowed the successful and direct detection of positive clones exhibiting PhoA activity, without the need for a secondary antibody. Colony assay screening with scFv-PhoA is simple, rapid, offers a higher success rate than previous methods based on scFv libraries, and—most importantly—it enables high-throughput procedures

    Potentiating Antigen-Specific Antibody Production with Peptides Obtained from In Silico Screening for High-Affinity against MHC-II

    No full text
    Monoclonal antibodies with high affinity and specificity are essential for research and clinical purposes, yet remain difficult to produce. Agretope peptides that can potentiate antigen-specific antibody production have been reported recently. Here, we screened in silico for peptides with higher affinity against the agretope binding pocket in the MHC-II. The screening was based on the 3D crystal structure of a complex between MHC-II and a 14-mer peptide consisting of ovalbumin residues 323–339. Using this 14-mer peptide as template, we constructed a library of candidate peptides and screened for those that bound tightly to MHC-II. Peptide sequences that exhibited a higher binding affinity than the original ovalbumin peptide were identified. The peptide with the highest binding affinity was synthesized and its ability to boost antigen-specific antibody production in vivo and in vitro was assessed. In both cases, antigen-specific IgG antibody production was potentiated. Monoclonal antibodies were established by in vitro immunization using this peptide as immunostimulant, confirming the usefulness of such screened peptides for monoclonal antibody production

    An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection.

    No full text
    Structural instability of wild-type fibroblast growth factor (FGF)-1 and its dependence on exogenous heparin for optimal activity diminishes its potential utility as a therapeutic agent. Here we evaluated FGFC, an FGF1:FGF2 chimeric protein, for its receptor affinity, absolute heparin-dependence, stability and potential clinical applicability. Using BaF3 transfectants overexpressing each FGF receptor (FGFR) subtype, we found that, like FGF1, FGFC activates all of the FGFR subtypes (i.e., FGFR1c, FGFR1b, FGFR2c, FGFR2b, FGFR3c, FGFR3b and FGFR4) in the presence of heparin. Moreover, FGFC activates FGFRs even in the absence of heparin. FGFC stimulated keratinocytes proliferation much more strongly than FGF2, as would be expected from its ability to activate FGFR2b. FGFC showed greater structural stability, biological activity and resistance to trypsinization, and less loss in solution than FGF1 or FGF2. When FGFC was intraperitoneally administered to BALB/c mice prior to whole body gamma-irradiation, survival of small intestine crypts was significantly enhanced, as compared to control mice. These results suggest that FGFC could be useful in a variety of clinical applications, including promotion of wound healing and protection against radiation-induced damage
    corecore