99 research outputs found

    Zone-Based Energy Aware Data Collection Protocol for WSNs

    Get PDF
    In this paper we propose the Zone-based Energy Aware data coLlection (ZEAL) protocol. ZEAL is designed to be used in agricultural applications for wireless sensor networks. In these type of applications, all data is often routed to a single point (named “sink” in sensor networks). The overuse of the same routes quickly depletes the energy of the nodes closer to the sink. In order to minimize this problem, ZEAL automatically creates zones (groups of nodes) independent from each other based on the trajectory of one or more mobile sinks. In this approach the sinks collects data queued in sub-sinks in each zone. Unlike existing protocols, ZEAL accomplish its routing tasks without using GPS modules for location awareness or synchronization mechanisms. Additionally, ZEAL provides an energy saving mechanism on the network layer that puts zones to sleep when there are no mobile sinks nearby. To evaluate ZEAL, it is compared with the Maximum Amount Shortest Path (MASP) protocol. Our simulations using the ns-3 network simulator show that ZEAL is able to collect a larger number of packets with significantly less energy in the same amount of time

    Functional characterization of BcrR:a one-component transmembrane signal transduction system for bacitracin resistance

    Get PDF
    Bacitracin is a cell wall targeting antimicrobial with clinical and agricultural applications. With the growing mismatch between antimicrobial resistance and development, it is essential we understand the molecular mechanisms of resistance in order to prioritize and generate new effective antimicrobials. BcrR is a unique membrane-bound one-component system that regulates high-level bacitracin resistance in Enterococcus faecalis. In the presence of bacitracin, BcrR activates transcription of the bcrABD operon conferring resistance through a putative ATP-binding cassette (ABC) transporter (BcrAB). BcrR has three putative functional domains, an N-terminal helix-turn-helix DNA-binding domain, an intermediate oligomerization domain and a C-terminal transmembrane domain. However, the molecular mechanisms of signal transduction remain unknown. Random mutagenesis of bcrR was performed to generate loss- and gain-of-function mutants using transcriptional reporters fused to the target promoter PbcrA. Fifteen unique mutants were isolated across all three proposed functional domains, comprising 14 loss-of-function and one gain-of-function mutant. The gain-of-function variant (G64D) mapped to the putative dimerization domain of BcrR, and functional analyses indicated that the G64D mutant constitutively expresses the PbcrA-luxABCDE reporter. DNA-binding and membrane insertion were not affected in the five mutants chosen for further characterization. Homology modelling revealed putative roles for two key residues (R11 and S33) in BcrR activation. Here we present a new model of BcrR activation and signal transduction, providing valuable insight into the functional characterization of membrane-bound one-component systems and how they can coordinate critical bacterial responses, such as antimicrobial resistance.</p
    corecore