67 research outputs found

    Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron loss. Muse cells are endogenous reparative pluripotent-like stem cells distributed in various tissues. They can selectively home to damaged sites after intravenous injection by sensing sphingosine-1-phosphate produced by damaged cells, then exert pleiotropic effects, including tissue protection and spontaneous differentiation into tissue-constituent cells. In G93A-transgenic ALS mice, intravenous injection of 5.0x10(4) cells revealed successful homing of human-Muse cells to the lumbar spinal cords, mainly at the pia-mater and underneath white matter, and exhibited glia-like morphology and GFAP expression. In contrast, such homing or differentiation were not recognized in human mesenchymal stem cells but were instead distributed mainly in the lung. Relative to the vehicle groups, the Muse group significantly improved scores in the rotarod, hanging-wire and muscle strength of lower limbs, recovered the number of motor neurons, and alleviated denervation and myofiber atrophy in lower limb muscles. These results suggest that Muse cells homed in a lesion site-dependent manner and protected the spinal cord against motor neuron death. Muse cells might also be a promising cell source for the treatment of ALS patients

    A new telestroke network system in northern area of Okayama prefecture

    Get PDF
    Background Telestroke network can provide rapid access to specialized treatment and improves on‐site management of acute stroke patients through the “hub‐and‐spoke” model. In the northern part of Okayama Prefecture, there has been a regional gap of stroke care due to the shortage of stroke specialists and facilities. In addition, due to the novel coronavirus disease 2019 (COVID‐19), it is required to reduce the unnecessary contact with stroke patients from other hospitals. Aim We organized a novel cost‐free telestroke network with an image and video sharing for neurological diseases in the northern part of Okayama Prefecture to improve the stroke management in the area. Method We prepared the tablet device on which Skype® application was installed for each hospital and recruited the patients who visited or hospitalized in the spoke hospitals and were suspected to have some neurological diseases from April 2019 to May 2020. The patient's clinical data were recorded and analyzed. Results During the study period, 5 patients were recruited including the cases with the initial diagnosis of stroke or brain tumor. Among them, 2 cases were transferred to the hub hospital, 2 cases were transferred to other hospitals, and 1 case was treated on site under specialist's advice. Conclusion The new telestroke network system may be beneficial for acute stroke management and reducing the unnecessary patient's transfer in the rural area, especially under coexistence with COVID‐19

    Long-Term Outcome of Proton Therapy and Carbon-Ion Therapy for Large (T2a–T2bN0M0) Non–Small-Cell Lung Cancer

    Get PDF
    IntroductionAlthough many reports have shown the safety and efficacy of stereotactic body radiotherapy (SBRT) for T1N0M0 non–small-cell lung cancer (NSCLC), it is rather difficult to treat T2N0M0 NSCLC, especially T2b (>5 cm) tumor, with SBRT. Our hypothesis was that particle therapy might be superior to SBRT in T2 patients. We evaluated the clinical outcome of particle therapy for T2a/bN0M0 NSCLC staged according to the 7th edition of the International Union Against Cancer (UICC) tumor, node, metastasis classification.MethodsFrom April 2003 to December 2009, 70 histologically confirmed patients were treated with proton (n = 43) or carbon-ion (n = 27) therapy according to institutional protocols. Forty-seven patients had a T2a tumor and 23 had a T2b tumor. The total dose and fraction (fr) number were 60 (Gray equivalent) GyE/10 fr in 20 patients, 52.8 GyE/4 fr in 16, 66 GyE/10 fr in 16, 80 GyE/20 fr in 14, and other in four patients, respectively. Toxicities were scored according to the Common Terminology Criteria for Adverse Events, Version 4.0.ResultsThe median follow-up period for living patients was 51 months (range, 24–103). For all 70 patients, the 4-year overall survival, local control, and progression-free survival rates were 58% (T2a, 53%; T2b, 67%), 75% (T2a, 70%; T2b, 84%), and 46% (T2a, 43%; T2b, 52%), respectively, with no significant differences between the two groups. The 4-year regional recurrence rate was 17%. Grade 3 pulmonary toxicity was observed in only two patients.ConclusionParticle therapy is well tolerated and effective for T2a/bN0M0 NSCLC. To further improve treatment outcome, adjuvant chemotherapy seems a reasonable option, whenever possible

    Radiotherapy using a laser proton accelerator

    Full text link
    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. The laser acceleration method provides many enhanced capabilities for the radiation oncologist. It reduces the overall system size and weight by more than one order of magnitude. The characteristics of the particle beams (protons) make them suitable for a class of therapy that might not be possible with the conventional accelerator, such as the ease for changing pulse intensity, the focus spread, the pinpointedness, and the dose delivery in general. A compact, uncluttered system allows a PET device to be located in the vicinity of the patient in concert with the compact gantry. The radiation oncologist may be able to irradiate a localized tumor by scanning with a pencil-like particle beam while ascertaining the actual dosage in the patient with an improved in-beam PET verification of auto-radioactivation induced by the beam therapy. This should yield an unprecedented flexibility in the feedback radiotherapy by the radiation oncologist. Laser accelerated radiotherapy has a unique niche in a current world of high energy accelerator using synchrotron or cyclotron.Comment: 26 pages, 8 figures, 2 tables, 69 references. International Symposium on Laser-Driven Relativistic Plasmas Applied for Science, Industry and Medicine, Kyoto, Japan, 17-20 September (2007

    A New Serum Biomarker Set to Detect Mild Cognitive Impairment and Alzheimer’s Disease by Peptidome Technology

    Get PDF
    Background: Because dementia is an emerging problem in the world, biochemical markers of cerebrospinal fluid (CSF) and radio-isotopic analyses are helpful for diagnosing Alzheimer’s disease (AD). Although blood sample is more feasible and plausible than CSF or radiological biomarkers for screening potential AD, measurements of serum amyloid- β (Aβ), plasma tau, and serum antibodies for Aβ1 - 42 are not yet well established. Objective: We aimed to identify a new serum biomarker to detect mild cognitive impairment (MCI) and AD in comparison to cognitively healthy control by a new peptidome technology. Methods: With only 1.5μl of serum, we examined a new target plate “BLOTCHIP®” plus a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) to discriminate control (n = 100), MCI (n = 60), and AD (n = 99). In some subjects, cognitive Mini-Mental State Examination (MMSE) were compared to positron emission tomography (PET) with Pittsburgh compound B (PiB) and the serum probability of dementia (SPD). The mother proteins of candidate serum peptides were examined in autopsied AD brains. Results: Apart from Aβ or tau, the present study discovered a new diagnostic 4-peptides-set biomarker for discriminating control, MCI, and AD with 87% of sensitivity and 65% of specificity between control and AD (***p  Conclusion: The present serum biomarker set provides a new, rapid, non-invasive, highly quantitative and low-cost clinical application for dementia screening, and also suggests an alternative pathomechanism of AD for neuroinflammation and neurovascular unit damage
    corecore