12 research outputs found

    Inverse gene expression of prostacyclin and thromboxane synthases in resident and activated peritoneal macrophages 1The nucleotide sequence reported in this paper has been submitted to the GenBank/DDBJ/EMBL Data Bank under the accession number AB001607.1

    Get PDF
    AbstractProstacyclin and thromboxaneA2 produced from prostaglandinH2 are known to be important modulators with opposite biological activities. To examine possible roles of these prostanoids in immune responses, we have studied the gene expression of prostacyclin synthase (PGIS) and thromboxane synthase (TXS) in murine resident macrophages or in macrophages elicited with casein or bacillus Calmette-Guérin (BCG). Northern blot analyses showed that the PGIS mRNA was expressed in a decreasing order in the resident, and casein- and BCG-elicited macrophages. In contrast, the TXS mRNA was expressed in an increasing order in the resident, and casein- and BCG-elicited macrophages. On the other hand, the mRNA for cyclooxygenase-2, which produces PGH2 and participates in the production of prostanoids in inflammation, was expressed in both the resident and BCG-elicited macrophages but barely in the casein-elicited cells. In situ hybridization analysis showed that the expression of mRNAs for PGIS and TXS was ascribable not only to the alteration of the expression levels of both mRNAs in the each macrophage but also to the changes in subpopulations of the cells expressing these mRNAs. These observations suggested that the inverse gene expression of PGIS and TXS in macrophages contributes to immune responses by modulating the relative levels of prostacyclin and thromboxaneA2

    Runx proteins regulate Foxp3 expression

    Get PDF
    Runx proteins are essential for hematopoiesis and play an important role in T cell development by regulating key target genes, such as CD4 and CD8 as well as lymphokine genes, during the specialization of naive CD4 T cells into distinct T helper subsets. In regulatory T (T reg) cells, the signature transcription factor Foxp3 interacts with and modulates the function of several other DNA binding proteins, including Runx family members, at the protein level. We show that Runx proteins also regulate the initiation and the maintenance of Foxp3 gene expression in CD4 T cells. Full-length Runx promoted the de novo expression of Foxp3 during inducible T reg cell differentiation, whereas the isolated dominant-negative Runt DNA binding domain antagonized de novo Foxp3 expression. Foxp3 expression in natural T reg cells remained dependent on Runx proteins and correlated with the binding of Runx/core-binding factor β to regulatory elements within the Foxp3 locus. Our data show that Runx and Foxp3 are components of a feed-forward loop in which Runx proteins contribute to the expression of Foxp3 and cooperate with Foxp3 proteins to regulate the expression of downstream target genes

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Flow Cytometry Analysis of Changes in the DNA Content of the Polychlorinated Biphenyl Degrader Comamonas testosteroni TK102: Effect of Metabolites on Cell-Cell Separation

    No full text
    Flow cytometry was used to monitor changes in the DNA content of the polychlorinated biphenyl (PCB)-degrading bacterium Comamonas testosteroni TK102 during growth in the presence or absence of PCBs. In culture medium without PCBs, the majority of stationary-phase cells contained a single chromosome. In the presence of PCBs, the percentage of cells containing two chromosomes increased from 12% to approximately 50%. In contrast, addition of PCBs did not change the DNA contents of three species that are unable to degrade PCBs. In addition, highly chlorinated PCBs that are not degraded by TK102 did not result in a change in the DNA content. These results suggest that PCBs did not affect the DNA content of the cells directly; rather, the intermediate metabolites resulting from the degradation of PCBs caused the increase in DNA content. To study the effect of intermediate metabolites on the DNA content of the cells, four bph genes, bphA1, bphB, bphC, and bphD, were disrupted by gene replacement. The resulting mutant strains accumulated intermediate metabolites when they were grown in the presence of PCBs or biphenyl (BP). When the bphB gene was disrupted, the percentage of cells containing two chromosomes increased in cultures grown with PCBs or BP. When grown with BP, cultures of this mutant accumulated two intermediate metabolites, 2-hydroxybiphenyl (2-OHBP) and 3-OHBP. Addition of 2- or 3-OHBP to a wild-type TK102 and non-PCB-degrading species culture also resulted in an increase in the percentage of cells containing two chromosomes. Electron microscopy revealed that cell-cell separation was inhibited in this culture. This is the first report that hydroxy-BPs can inhibit bacterial cell separation while allowing continued DNA replication

    Validation of a protocol based on Raman and infrared spectroscopies to nondestructively estimate the oxidative degradation of UHMWPE used in total joint arthroplasty

    No full text
    As a matter of fact, the in vivo oxidative degradation of highly cross-linked polyethylene (HXLPE) still remains one of the limiting factors that affect the long term survivorship of joint replacements. Recent studies clearly pointed out that also the new generation of highly cross-linked and remelted polyethylene components in total hip and knee replacement underwent unexpected oxidation after 5-10years of implantation. The standard methodology to investigate the oxidation of polyethylene (PE) relies on the use of infrared spectroscopy, which, if from one hand is a reliable technique for the detection of oxidized species containing carbonyl group, on the other hand it is not capable of discriminating the fraction of carboxyl acids that is responsible for chain scission and subsequent deterioration of the mechanical properties of the polymer. In the present study we validate a new protocol based on Raman spectroscopy, which is suitable on assessing the structural degradation of polyethylene induced by oxidation. Following in vitro accelerated aging experiments, the oxidation index (OI) of different commercially available HXLPEs, as calculated by infrared spectroscopy according to ASTM standard, has been univocally correlated to the most severe variation of crystalline phase (\u3b1c), as calculated by Raman spectroscopy. In each material, locations with equal values of OI showed different degree of recrystallization induced by chain scission, confirming that infrared spectroscopy might overestimate the effective mechanical degradation of the polymer. In addition, as compared to the standards based on infrared spectroscopy, this new method of assessing oxidation enables to investigate the degradation occurring on the original surface of HXLPE components, due to the nondestructive nature of Raman spectroscopy and its high spatial resolution
    corecore