48 research outputs found

    Segmental Duration Control Based on an Articulatory Model

    Get PDF
    This paper proposes a new method that determines segmental duration for text-to-speech conversion based on the movement of articulatory organs which compose an articulatory model. The articulatory model comprises four time-variable articulatory parameters representing the conditions of articulatory organs whose physical restriction seems to significantly influence the segmental duration. The parameters are controlled according to an input sequence of phonetic symbols, following which segmental duration is determined based on the variation of the articulatory parameters. The proposed method is evaluated through an experiment using a Japanese speech database that consists of 150 phonetically balanced sentences. The results indicate that the mean square error of predicted segmental duration is approximately 15[ms] for the closed set and 15-17[ms] for the open set. The error is within 20[ms], the level of acceptability for distortion of segmental duration without loss of naturalness, and hence the method is proved to effectively predict segmental duration

    Research Activities in the Department of Medical Engineering

    Get PDF
    The Department of Medical Engineering is dedicated to the research and educational activities to fulfill its mission as educating medical professionals in medical engineering under the diploma policy and curriculum policy, that is, "research and education aiming for fostering professionals competent in comprehensive resolving capacity based upon a wide field of knowledge and vision in clinical engineering, which can be attained by wearing the basic knowledge of medical science and engineering." For this reason, the Faculty of the Department of Medical Engineering is composed of the two areas; PhDs in engineering-based clinical medicine, and mainly MDs in medical sciences and clinical medicine. To summarize the research activities at the Department of Medical Engineering, the authors will describe the overview of research activities being performed in the Department of Medical Engineering Fields, by dividing into 1) Research in Biomedical Engineering Fields, and 2) Research in Medical Science and Clinical Engineering Fields

    Research Promotion in Nursing, Physiotherapy, Occupational Therapy and Medical Engineering - Appeal and Recommendation to the Colleague -

    Get PDF
    [Summary] Despite of the severe situations of insufficient money, labor, time, and communication, we want to promote the research activity in our university to the level of major institutions. The first step we propose is to acquire the external research grants from public resources. The specific proposal is described in grant application to increase the probability of successful adoption of the grant from the Ministry of Education and Science of Japan

    癌性十二指腸結腸瘻の3症例

    Get PDF

    Efficient Separation of Photoexcited Charge at Interface between Pure CeO2 and Y3+-Doped CeO2 with Heterogonous Doping Structure for Photocatalytic Overall Water Splitting

    No full text
    Enhancement of photoexcited charge separation in semiconductor photocatalysts is one of the important subjects to improve the efficiency of energy conversion for photocatalytic overall water splitting into H2 and O2. In this study, we report an efficient separation of photoexcited charge at the interface between non-doped pure CeO2 and Y3+-doped CeO2 phases on particle surfaces with heterogeneous doping structure. Neither non-doped pure CeO2 and homogeneously Y3+-doped CeO2 gave activities for photocatalytic H2 and O2 production under ultraviolet light irradiation, meaning that both single phases showed little activity. On the other hand, Y3+-heterogeneously doped CeO2 of which the surface was composed of non-doped pure CeO2, and Y3+-doped CeO2 phases exhibited remarkable photocatalytic activities, indicating that the interfacial heterostructure between non-doped pure CeO2 and Y3+-doped CeO2 phases plays an important role for the activation process. The role of the interface between two different phases for activated expression was investigated by selective photo-reduction and oxidation deposition techniques of metal ion, resulting that the interface between two phases become an efficient separation site of photoexcited charge. Electronic band structures of both phases were investigated by the spectroscopic method, and then a mechanism of charge separation is discussed

    Efficient Separation of Photoexcited Charge at Interface between Pure CeO<sub>2</sub> and Y<sup>3+</sup>-Doped CeO<sub>2</sub> with Heterogonous Doping Structure for Photocatalytic Overall Water Splitting

    No full text
    Enhancement of photoexcited charge separation in semiconductor photocatalysts is one of the important subjects to improve the efficiency of energy conversion for photocatalytic overall water splitting into H2 and O2. In this study, we report an efficient separation of photoexcited charge at the interface between non-doped pure CeO2 and Y3+-doped CeO2 phases on particle surfaces with heterogeneous doping structure. Neither non-doped pure CeO2 and homogeneously Y3+-doped CeO2 gave activities for photocatalytic H2 and O2 production under ultraviolet light irradiation, meaning that both single phases showed little activity. On the other hand, Y3+-heterogeneously doped CeO2 of which the surface was composed of non-doped pure CeO2, and Y3+-doped CeO2 phases exhibited remarkable photocatalytic activities, indicating that the interfacial heterostructure between non-doped pure CeO2 and Y3+-doped CeO2 phases plays an important role for the activation process. The role of the interface between two different phases for activated expression was investigated by selective photo-reduction and oxidation deposition techniques of metal ion, resulting that the interface between two phases become an efficient separation site of photoexcited charge. Electronic band structures of both phases were investigated by the spectroscopic method, and then a mechanism of charge separation is discussed

    Gait variability before surgery and at discharge in patients who undergo total knee arthroplasty: a cohort study.

    No full text
    This study aimed to determine gait ability at hospital discharge in patients undergoing total knee arthroplasty (TKA) as an indicator of the risk of falling. Fifty-seven patients undergoing primary TKA for knee osteoarthritis participated in this study. Gait variability measured with accelerometers and physical function including knee range of motion (ROM), quadriceps strength, walking speed, and the Timed Up and Go (TUG) test were evaluated preoperatively and at discharge from the hospital (1 month before and 5 days after surgery). All patients were discharged directly home at 5 days after surgery. Knee flexion of ROM, quadriceps strength, walking speed, and the TUG test results were significantly worse at hospital discharge than preoperatively (p < 0.001). However, gait variability was not significantly different before and after TKA. This result indicated that patients following TKA surgery could walk at hospital discharge as stably as preoperatively regardless of the decrease in physical function, including knee ROM, quadriceps strength, and gait speed after surgery
    corecore