5 research outputs found

    Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice

    Get PDF
    Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4–5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating l-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5–16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34 ± 0.32), arginine (Arg, 1.66 ± 0.39), glutamine (Gln, 1.75 ± 0.60), and proline (Pro, 1.48 ± 0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56 ± 0.30). However, essential amino acids mixtures (BCAA + Arg + Gln, BCAA + Gln, and BCAA + Pro) significantly increased the FSR (2.07 ± 0.58, 2.04 ± 0.54, 2.01 ± 0.50 and 2.07 ± 0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation

    Observation of Partial Discharge Current Waveform under Inverter Surge Application

    No full text

    Serial activation of distinct cytoarchitectonic areas of the human SI cortex after posterior tibial nerve stimulation

    No full text
    MEG recordings visualized non-invasively a serial mediolateral activation of the human somatosensory 3b area followed by a stationary activation of area 1 after median nerve stimulation. Somatosensory evoked ®elds (SEFs) were recorded over the hand area contralateral to the right median nerve stimulation at the wrist in six normal subjects. A newly developed MEG vector beamformer technique applied to the SEFs revealed two distinct sources (areas 3b and 1) in the primary somatosensory cortex (SI) during the primary N20m-P22m response in all subjects. The ®rst source was located in area 3b, which started to move sequentially toward mediolateral direction 0.7 ms prior to the peak of N20m and ended its movement 1.4 ms after the peak with a total distance of 11.2 mm. We speculate that the movement re¯ects a sequential mediolateral activation of the pyramidal cells in area 3b, which is mediated by horizontal connections running parallel to the cortical surface. The second source in area 1, located 5.6 mm medial and 4.2 mm posterior to the ®rst source, was active 1.0 ms after the N20m peak. Then, the ®rst source became inactive and the second source was dominant. In sharp contrast with the ®rst source, the second source was stationary. The different behavior of these two components (moving vs stationary) indicates independent parallel inputs to area 3b and area 1 from the thalamus
    corecore