18 research outputs found

    Nasopharyngeal carcinoma presenting with rapidly progressive severe visual disturbance: a case report

    Get PDF
    INTRODUCTION: Nasopharyngeal carcinoma is one of the most difficult tumors to diagnose correctly at the initial phase because of the occasional lack of nasal symptoms. The perineural spread of the trigeminal nerve is one of the most common and important routes in the intracranial paracavernous extension of nasopharyngeal carcinoma, but visual loss is very rare. CASE PRESENTATION: We report the case of a 54-year-old Japanese man with nasopharyngeal carcinoma, who presented with rapid and severe disturbance of left monocular visual acuity and eye movement with a 10-month history of ipsilateral otitis media and facial pain. Magnetic resonance imaging revealed a lesion in the left fossa of Rosenmüller, pterygopalatine fossa, sphenoid and ethmoid sinus, and the left cavernous sinus extending to the orbital apex through the superior orbital fissure. The histopathological diagnosis was nonkeratinizing undifferentiated nasopharyngeal carcinoma. Epstein–Barr virus was detected by in situ hybridization. Although focal radiotherapy induced remarkable tumor shrinkage and relieved ocular motor disturbance and facial pain, his visual acuity did not improve. CONCLUSION: The awareness of cranial nerves in addition to intracranial and orbital apex involvement, as in this case, is important for appropriate diagnosis and treatment planning of nasopharyngeal carcinoma

    TLR4 (Toll-Like Receptor 4) Mediates the Development of Intracranial Aneurysm Rupture.

    No full text
    Inflammation is emerging as a critical factor in the pathophysiology of intracranial aneurysm. TLR4 (toll-like receptor 4) contributes not only to the innate immune responses but also to the inflammatory processes associated with vascular disease. Therefore, we examined the contribution of the TLR4 pathway to the development of the rupture of intracranial aneurysm. We used a mouse model of intracranial aneurysm. TLR4 inhibition significantly reduced the development of aneurysmal rupture. In addition, the rupture rate and levels of proinflammatory cytokines were lower in TLR4 knockout mice than the control littermates. Macrophage/monocyte-specific TLR4 knockout mice had a lower rupture rate than the control littermate mice. Moreover, the deficiency of MyD88 (myeloid differentiation primary-response protein 88), a key mediator of TLR4, reduced the rupture rate. These findings suggest that the TLR4 pathway promotes the development of intracranial aneurysmal rupture by accelerating inflammation in aneurysmal walls. Inhibition of the TLR4 pathway in inflammatory cells may be a promising approach for the prevention of aneurysmal rupture and subsequent subarachnoid hemorrhage

    Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism

    No full text
    Activation of mast cells participates in the chronic inflammation associated with cerebral arteries in intracranial aneurysm formation and rupture. Several studies have shown that the anti-inflammatory effect of mesenchymal stem cells (MSCs) is beneficial for the treatment of aneurysms. However, some long-term safety concerns exist regarding stem cell-based therapy for clinical use. We investigated the therapeutic potential of microvesicles (MVs) derived from human MSCs, anuclear membrane bound fragments with reparative properties, in preventing the rupture of intracranial aneurysm in mice, particularly in the effect of MVs on mast cell activation. Intracranial aneurysm was induced in C57BL/6 mice by the combination of systemic hypertension and intrathecal elastase injection. Intravenous administration of MSC-derived MVs on day 6 and day 9 after aneurysm induction significantly reduced the aneurysmal rupture rate, which was associated with reduced number of activated mast cells in the brain. A23187-induced activation of both primary cultures of murine mast cells and a human mast cell line, LAD2, was suppressed by MVs treatment, leading to a decrease in cytokine release and tryptase and chymase activities. Upregulation of prostaglandin E2 (PGE2) production and E-prostanoid 4 (EP4) receptor expression were also observed on mast cells with MVs treatment. Administration of an EP4 antagonist with the MVs eliminated the protective effect of MVs against the aneurysmal rupture in vivo. Human MSC-derived MVs prevented the rupture of intracranial aneurysm, in part due to their anti-inflammatory effect on mast cells, which was mediated by PGE2 production and EP4 activation. Stem Cells 2016;34:2943–2955

    Protective effect of mesenchymal stem cells against the development of intracranial aneurysm rupture in mice

    No full text
    BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent stem or stromal cells found in multiple tissues. Intravenous MSC injections have been used to treat various diseases with an inflammatory component in animals and humans. Inflammation is emerging as a key component of pathophysiology of intracranial aneurysms. Modulation of inflammation by MSCs may affect sustained inflammatory processes that lead to aneurysmal rupture. OBJECTIVE: To assess the effect of MSCs on the development of aneurysm rupture using a mouse model. METHODS: Intracranial aneurysms were induced with a combination of a single elastase injection into the cerebrospinal fluid and deoxycorticosterone acetate salt-induced hypertension in mice. We administered allogeneic bone marrow-derived MSCs or vehicle, 6 and 9 d after aneurysm induction. RESULTS: MSC administration significantly reduced rupture rate (vehicle control vs MSCs, 90% vs 36%; P \u3c .05). In cell culture experiments with an MSC and mast cell coculture, MSCs stabilized mast cells through cyclooxygenase-2 (COX-2)-dependent production of prostaglandin E2, thereby reducing the release of proinflammatory cytokines from mast cells. Pretreatment of MSCs with COX-2 inhibitor, NS-398, abolished the protective effect of MSCs against the development of aneurysm rupture. CONCLUSION: Intravenous administration of MSCs after aneurysm formation prevented aneurysmal rupture in mice. The protective effect of MSCs against the development of aneurysm rupture appears to be mediated in part by the stabilization of mast cells by MSCs

    Noninvasive Vagus Nerve Stimulation Prevents Ruptures And Improves Outcomes In A Model Of Intracranial Aneurysm In Mice

    No full text
    Background and Purpose- Inflammation is a critical determinant of aneurysmal wall destabilization, growth, and rupture risk. Targeting inflammation may suppress aneurysm rupture. Vagus nerve stimulation (VNS) has been shown to suppress inflammation both systemically and in the central nervous system. Therefore, we tested the effect of a novel noninvasive transcutaneous VNS approach on aneurysm rupture and outcome in a mouse model of intracranial aneurysm formation with wall inflammation. Methods- Aneurysms were induced by a single stereotaxic injection of elastase into the cerebrospinal fluid at the skull base, combined with systemic deoxycorticosterone-salt hypertension, without or with high-salt diet, for mild or severe outcomes, respectively. Cervical VNS (two 2-minute stimulations 5 minutes apart) was delivered once a day starting from the day after elastase injection for the duration of follow-up. Transcutaneous stimulation of the femoral nerve (FNS) served as control. Multiple aneurysms developed in the circle of Willis and its major branches, resulting in spontaneous ruptures and subarachnoid hemorrhage, neurological deficits, and mortality. Results- In the milder model, VNS significantly reduced aneurysm rupture rate compared with FNS (29% versus 80%, respectively). Subarachnoid hemorrhage grades were also lower in the VNS group. In the more severe model, both VNS and FNS arms developed very high rupture rates (77% and 85%, respectively). However, VNS significantly improved the survival rate compared with FNS after rupture (median survival 13 versus 6 days, respectively), without diminishing the subarachnoid hemorrhage grades. Chronic daily VNS reduced MMP-9 (matrix metalloproteinase-9) expression compared with FNS, providing a potential mechanism of action. As an important control, chronic daily VNS did not alter systemic arterial blood pressure compared with FNS. Conclusions- VNS can reduce aneurysm rupture rates and improve the outcome from ruptured aneurysms

    Successful serial imaging of the mouse cerebral arteries using conventional 3-T magnetic resonance imaging

    No full text
    Serial imaging studies can be useful in characterizing the pathologic and physiologic remodeling of cerebral arteries in various mouse models. We tested the feasibility of using a readily available, conventional 3-T magnetic resonance imaging (MRI) to serially image cerebrovascular remodeling in mice. We utilized a mouse model of intracranial aneurysm as a mouse model of the dynamic, pathologic remodeling of cerebral arteries. Aneurysms were induced by hypertension and a single elastase injection into the cerebrospinal fluid. For the mouse cerebrovascular imaging, we used a conventional 3-T MRI system and a 40-mm saddle coil. We used non-enhanced magnetic resonance angiography (MRA) to detect intracranial aneurysm formation and T2-weighted imaging to detect aneurysmal subarachnoid hemorrhage. A serial MRI was conducted every 2 to 3 days. MRI detection of aneurysm formation and subarachnoid hemorrhage was compared against the postmortem inspection of the brain that was perfused with dye. The imaging times for the MRA and T2-weighted imaging were 3.7±0.5 minutes and 4.8±0.0 minutes, respectively. All aneurysms and subarachnoid hemorrhages were correctly identified by two masked observers on MRI. This MRI-based serial imaging technique was useful in detecting intracranial aneurysm formation and subarachnoid hemorrhage in mice
    corecore