117 research outputs found

    Roles of silica and lignin in horsetail (Equisetum hyemale), with special reference to mechanical properties

    Get PDF
    This research deals with detailed analyses of silica and lignin distribution in horsetail with special reference to mechanical strength. Scanning electron images of a cross-section of an internode showed silica deposited densely only around the outer epidermis. Detailed histochemical analyses of lignin showed no lignin deposition in the silica-rich outer internodes of horsetail, while a characteristic lignin deposition was noticed in the vascular bundle in inner side of internodes. To analyze the structure of horsetail from a mechanical viewpoint, we calculated the response of a model structure of horsetail to a mechanical force applied perpendicularly to the long axis by a finite element method. We found that silica distributed in the outer epidermis may play the major structural role, with lignin's role being limited ensuring that the vascular bundle keep waterproof. These results were in contrast to more modern tall trees like gymnosperms, for which lignin provides mechanical strength. Lignin has the advantage of sticking to cellulose, hemicellulose, and other materials. Such properties make it possible for plants containing lignin to branch. Branching of tree stems aids in competing for light and other atmospheric resources. This type of branching was impossible for ancient horsetails, which relied on the physical properties of silica. From the evolutional view points, over millennia in trees with high lignin content, true branching, and many chlorophyll-containing leaves developed. (C) 2012 American Institute of Physics. [https://doi.org/10.1063/1.3688253]ArticleJOURNAL OF APPLIED PHYSICS. 111(4):044703 (2012)journal articl

    Structures and physiological functions of silica bodies in the epidermis of rice plants

    Get PDF
    We characterized silica structures in the epidermis of rice plant leaves and investigated their physiological functions from optical and mechanical viewpoints. By treating the distribution of silica bodies as a triangular lattice in the xy plane, and performing a theoretical optical analysis on this lattice, we discovered that a reduction in the photonic density of states may inhibit leaves of rice plant from being heated markedly higher than 20 degrees C. Ladderlike structures in the epidermis were mechanically investigated. These structures are conjectured to inhibit flat leaves from undergoing twisting torsions, which may assist the leaf to absorb sunlight more effectively for photosynthesis. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232204]ArticleAPPLIED PHYSICS LETTERS. 95(12):123703 (2009)journal articl

    Preparation of a CuGaSe2 single crystal and its photocathodic properties

    Get PDF
    Chalcopyrite CuGaSe2 single crystals were successfully synthesized by the flux method using a home-made Bridgman-type furnace. The grown crystals were nearly stoichiometric with a Se-poor composition. Although a wafer form of the thus-obtained single crystal showed poor p-type electrical properties due to such unfavorable off-stoichiometry, these properties were found to be improved by applying a post-annealing treatment under Se vapor conditions. As a result, an electrode derived from the Se-treated single crystalline wafer showed appreciable p-type photocurrents. After deposition of a CdS ultrathin layer and a nanoparticulate Pt catalyst on the surface of the electrode, appreciable photoelectrochemical H2 evolution was observed over the modified electrode under photoirradiation by simulated sunlight with application of a bias potential of 0 VRHE

    Risk Management Function and Risk Communication in Hospital : Case of St. Marianna University School of Medicine Hospital

    Get PDF
    本稿では,近年,企業で取り組みが顕著となっている「リスクマネジメントの組織体制の構築」と「リスク情報の開示(リスク・コミュニケーション)」が医療機関においてどのように展開されているかについて検討を加える.まず第一に,理論的なフレームワークを提示する目的で,企業における「リスクマネジメントの組織体制構築」と「リスク情報の開示(リスク・コミュニケーション)」の動向をまとめる.第二に,企業リスクマネジメントのフレームワークにあてはめて,医療機関のリスクマネジメントについて検討を加える.第三に,聖マリアンナ医科大学病院における臓器移植体制構築の事例を考察する.In this study, we initially present the framework of business risk management mainly that of risk management function and risk information disclosure (risk communication). Secondly, based on the framework of business risk management, we analyze (1) how risk management function should be organized and (2) how risk communication should be carried out within the hospital. Lastly we present a case study of the organ transplant practice in St. Marianna University School of Medicine Hospital

    Roles of silica and lignin in horsetail ( Equisetum hyemale

    Get PDF
    This research deals with detailed analyses of silica and lignin distribution in horsetail with special reference to mechanical strength. Scanning electron images of a cross-section of an internode showed silica deposited densely only around the outer epidermis. Detailed histochemical analyses of lignin showed no lignin deposition in the silica-rich outer internodes of horsetail, while a characteristic lignin deposition was noticed in the vascular bundle in inner side of internodes. To analyze the structure of horsetail from a mechanical viewpoint, we calculated the response of a model structure of horsetail to a mechanical force applied perpendicularly to the long axis by a finite element method. We found that silica distributed in the outer epidermis may play the major structural role, with lignin's role being limited ensuring that the vascular bundle keep waterproof. These results were in contrast to more modern tall trees like gymnosperms, for which lignin provides mechanical strength. Lignin has the advantage of sticking to cellulose, hemicellulose, and other materials. Such properties make it possible for plants containing lignin to branch. Branching of tree stems aids in competing for light and other atmospheric resources. This type of branching was impossible for ancient horsetails, which relied on the physical properties of silica. From the evolutional view points, over millennia in trees with high lignin content, true branching, and many chlorophyll-containing leaves developed. (C) 2012 American Institute of Physics. [https://doi.org/10.1063/1.3688253]ArticleJOURNAL OF APPLIED PHYSICS. 111(4):044703 (2012)journal articl

    Establishment of a Novel Fluorescence-Based Method to Evaluate Chaperone-Mediated Autophagy in a Single Neuron

    Get PDF
    Background: Chaperone-mediated autophagy (CMA) is a selective autophagy-lysosome protein degradation pathway. The role of CMA in normal neuronal functions and in neural disease pathogenesis remains unclear, in part because there is no available method to monitor CMA activity at the single-cell level. Methodology/Principal Findings: We sought to establish a single-cell monitoring method by visualizing translocation of CMA substrates from the cytosol to lysosomes using the HaloTag (HT) system. GAPDH, a CMA substrate, was fused to HT (GAPDH-HT); this protein accumulated in the lysosomes of HeLa cells and cultured cerebellar Purkinje cells (PCs) after labeling with fluorescent dye-conjugated HT ligand. Lysosomal accumulation was enhanced by treatments that activate CMA and prevented by siRNA-mediated knockdown of LAMP2A, a lysosomal receptor for CMA, and by treatments that inactivate CMA. These results suggest that lysosomal accumulation of GAPDH-HT reflects CMA activity. Using this method, we revealed that mutant cPKC, which causes spinocerebellar ataxia type 14, decreased CMA activity in cultured PCs. Conclusion/Significance: In the present study, we established a novel fluorescent-based method to evaluate CMA activity in a single neuron. This novel method should be useful and valuable for evaluating the role of CMA in various neurona
    corecore