80 research outputs found
Comparisons of Brightness Temperatures of Landsat-7/ETM+ and Terra/MODIS around Hotien Oasis in the Taklimakan Desert
The brightness temperature (BT) of Taklimakan Desert retrieved from the data of Landsat-7/ETM+ band 6 and Terra/MODIS band 31 and 32 indicates the following features: (1) good linear relationship between the BT of ETM+ and that of MODIS, (2) the observation time adjusted BT of ETM+ is almost equal to that of MODIS, (3) the BT of Terra/MODIS band 31 is slightly higher than that of band 32 over a reservoir while opposite feature is recognized over desert area, (4) the statistical analysis of 225 sample data of ETM+ in one pixel of MODIS for different landcovers indicates that the standard deviation and range of BT of ETM+ corresponding to one pixel of MODIS are 0.45∘C, 2.25∘C for a flat area of desert, while respective values of the oasis farmland and shading side of rocky hill amount to 2.88∘C, 14.04∘C, and 2.80∘C, 16.04∘C
Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study
INTRODUCTION: TNFAIP3 interacting protein 1, TNIP1 (ABIN-1) is involved in inhibition of nuclear factor-κB (NF-κB) activation by interacting with TNF alpha-induced protein 3, A20 (TNFAIP3), an established susceptibility gene to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recent genome-wide association studies revealed association of TNIP1 with SLE in the Caucasian and Chinese populations. In this study, we investigated whether the association of TNIP1 with SLE was replicated in a Japanese population. In addition, association of TNIP1 with RA was also examined. METHODS: A case-control association study was conducted on the TNIP1 single nucleotide polymorphism (SNP) rs7708392 in 364 Japanese SLE patients, 553 RA patients and 513 healthy controls. RESULTS: Association of TNIP1 rs7708392C was replicated in Japanese SLE (allele frequency in SLE: 76.5%, control: 69.9%, P = 0.0022, odds ratio [OR] 1.40, 95% confidence interval [CI] 1.13-1.74). Notably, the risk allele frequency in the healthy controls was considerably greater in Japanese (69.9%) than in Caucasians (24.3%). A tendency of stronger association was observed in the SLE patients with renal disorder (P = 0.00065, OR 1.60 [95%CI 1.22-2.10]) than in all SLE patients (P = 0.0022, OR 1.40 [95%CI 1.13-1.74]). Significant association with RA was not observed, regardless of the carriage of human leukocyte antigen DR β1 (HLA-DRB1) shared epitope. Significant gene-gene interaction between TNIP1 and TNFAIP3 was detected neither in SLE nor RA. CONCLUSIONS: Association of TNIP1 with SLE was confirmed in a Japanese population. TNIP1 is a shared SLE susceptibility gene in the Caucasian and Asian populations, but the genetic contribution appeared to be greater in the Japanese and Chinese populations because of the higher risk allele frequency. Taken together with the association of TNFAIP3, these observations underscore the crucial role of NF-κB regulation in the pathogenesis of SLE
Association of TNFAIP3 Polymorphism with Susceptibility to Systemic Lupus Erythematosus in a Japanese Population
Recent genome-wide association studies demonstrated association of single nucleotide polymorphisms (SNPs) in the TNFAIP3 region at 6q23 with systemic lupus erythematosus (SLE) in European-American populations. In this study, we investigated whether SNPs in the TNFAIP3 region are associated with SLE also in a Japanese population. A case-control association study was performed on the SNPs rs13192841, rs2230926, and rs6922466 in 318 Japanese SLE patients and 444 healthy controls. Association of rs2230926 G allele with SLE was replicated in Japanese (allelic association P = .033, odds ratio [OR] 1.47, recessive model P = .023, OR 8.52). The association was preferentially observed in the SLE patients with nephritis. When the TNFAIP3 mRNA levels of the HapMap samples were examined using GENEVAR database, the presence of TNFAIP3 rs2230926 G allele was associated with lower mRNA expression of TNFAIP3 (P = .013). These results indicated that TNFAIP3 is a susceptibility gene to SLE both in the Caucasian and Asian populations
Association of TNFAIP3 polymorphism with susceptibility to systemic lupus erythematosus in a Japanese population
Recent genome-wide association studies demonstrated association of single nucleotide polymorphisms (SNPs) in the TNFAIP3 region at 6q23 with systemic lupus erythematosus (SLE) in European-American populations. In this study, we investigated whether SNPs in the TNFAIP3 region are associated with SLE also in a Japanese population. A case-control association study was performed on the SNPs rs13192841, rs2230926, and rs6922466 in 318 Japanese SLE patients and 444 healthy controls. Association of rs2230926 G allele with SLE was replicated in Japanese (allelic association P = .033, odds ratio [OR] 1.47, recessive model P = .023, OR 8.52). The association was preferentially observed in the SLE patients with nephritis. When the TNFAIP3 mRNA levels of the HapMap samples were examined using GENEVAR database, the presence of TNFAIP3 rs2230926 G allele was associated with lower mRNA expression of TNFAIP3 (P = .013). These results indicated that TNFAIP3 is a susceptibility gene to SLE both in the Caucasian and Asian populations
Cutaneous T-cell-attracting chemokine as a novel biomarker for predicting prognosis of idiopathic pulmonary fibrosis: a prospective observational study
[Background] Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease that leads to respiratory failure and death. Although there is a greater understanding of the etiology of this disease, accurately predicting the disease course in individual patients is still not possible. This study aimed to evaluate serum cytokines/chemokines as potential biomarkers that can predict outcomes in IPF patients. [Methods] A multi-institutional prospective two-stage discovery and validation design using two independent cohorts was adopted. For the discovery analysis, serum samples from 100 IPF patients and 32 healthy controls were examined using an unbiased, multiplex immunoassay of 48 cytokines/chemokines. The serum cytokine/chemokine values were compared between IPF patients and controls; the association between multiplex measurements and survival time was evaluated in IPF patients. In the validation analysis, the cytokines/chemokines identified in the discovery analysis were examined in serum samples from another 81 IPF patients to verify the ability of these cytokines/chemokines to predict survival. Immunohistochemical assessment of IPF-derived lung samples was also performed to determine where this novel biomarker is expressed. [Results] In the discovery cohort, 18 cytokines/chemokines were significantly elevated in sera from IPF patients compared with those from controls. Interleukin-1 receptor alpha (IL-1Rα), interleukin-8 (IL-8), macrophage inflammatory protein 1 alpha (MIP-1α), and cutaneous T-cell-attracting chemokine (CTACK) were associated with survival: IL-1Rα, hazard ratio (HR) = 1.04 per 10 units, 95% confidence interval (95% CI) 1.01–1.07; IL-8, HR = 1.04, 95% CI 1.01–1.08; MIP-1α, HR = 1.19, 95% CI 1.00–1.36; and CTACK, HR = 1.12 per 100 units, 95% CI 1.02–1.21. A replication analysis was performed only for CTACK because others were previously reported to be potential biomarkers of interstitial lung diseases. In the validation cohort, CTACK was associated with survival: HR = 1.14 per 100 units, 95% CI 1.01–1.28. Immunohistochemistry revealed the expression of CTACK and CC chemokine receptor 10 (a ligand of CTACK) in airway and type II alveolar epithelial cells of IPF patients but not in those of controls. [Conclusions] CTACK is a novel prognostic biomarker of IPF
Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region
IntroductionRecent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.MethodsIn the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.ResultsIn the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).ConclusionsThe same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent
TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study
IntroductionThe Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3\u27 untranslated region (3\u27 UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.MethodsA case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.ResultsIn addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3\u27 UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3\u27 UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3\u27 UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.ConclusionsThe TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3\u27 UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations
Ventilation versus biology:What is the controlling mechanism of nitrous oxide distribution in the North Atlantic?
The extent to which water mass mixing and ocean ventilation contribute to nitrous oxide (N2O) distribution at the scale of oceanic basins is poorly constrained. We used novel N2O and chlorofluorocarbon measurements along with multiparameter water mass analysis to evaluate the impact of water mass mixing and Atlantic Meridional Overturning Circulation (AMOC) on N2O distribution along the Observatoire de la variabilité interannuelle et décennale en Atlantique Nord (OVIDE) section, extending from Portugal to Greenland. The biological N2O production has a stronger impact on the observed N2O concentrations in the water masses traveling northward in the upper limb of the AMOC than those in recently ventilated cold water masses in the lower limb, where N2O concentrations reflect the colder temperatures. The high N2O tongue, with concentrations as high as 16 nmol kg−1, propagates above the isopycnal surface delimiting the upper and lower AMOC limbs, which extends from the eastern North Atlantic Basin to the Iceland Basin and coincides with the maximum N2O production rates. Water mixing and basin-scale remineralization account for 72% of variation in the observed distribution of N2O. The mixing-corrected stoichiometric ratio N2O:O2 for the North Atlantic Basin of 0.06 nmol/μmol is in agreement with ratios of N2O:O2 for local N2O anomalies, suggesting than up to 28% of N2O production occurs in the temperate and subpolar Atlantic, an overlooked region for N2O cycling. Overall, our results highlight the importance of taking into account mixing, O2 undersaturation when water masses are formed and the increasing atmospheric N2O concentrations when parameterizing N2O:O2 and biological N2O production in the global oceans
Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH
Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 5′ end of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only the 3′UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells, we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions
- …