33 research outputs found

    Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma

    Get PDF
    Background & AimsObesity defined by body mass index (BMI) significantly increases the risk of hepatocellular carcinoma (HCC). In contrast, not only obesity but also underweight is associated with poor prognosis in patients with HCC. Differences in body composition rather than BMI were suggested to be true determinants of prognosis. However, this hypothesis has not been demonstrated conclusively.MethodsWe measured skeletal muscle index (SMI), mean muscle attenuation (MA), visceral adipose tissue index, subcutaneous adipose tissue index, and visceral to subcutaneous adipose tissue area ratios (VSR) via computed tomography in a large-scale retrospective cohort of 1257 patients with different stages of HCC, and comprehensively analyzed the impact of body composition on the prognoses.ResultsAmong five body composition components, low SMI (called sarcopenia), low MA (called intramuscular fat [IMF] deposition), and high VSR (called visceral adiposity) were significantly associated with mortality, independently of cancer stage or Child-Pugh class. A multivariate analysis revealed that sarcopenia (hazard ratio [HR], 1.52; 95% confidence interval [CI], 1.18–1.96; p=0.001), IMF deposition (HR, 1.34; 95% CI, 1.05–1.71; p=0.020), and visceral adiposity (HR, 1.35; 95% CI, 1.09–1.66; p=0.005) but not BMI were significant predictors of survival. The prevalence of poor prognostic body composition components was significantly higher in underweight and obese patients than in normal weight patients.ConclusionsSarcopenia, IMF deposition, and visceral adiposity independently predict mortality in patients with HCC. Body composition rather than BMI is a major determinant of prognosis in patients with HCC

    Cutaneous T-cell-attracting chemokine as a novel biomarker for predicting prognosis of idiopathic pulmonary fibrosis: a prospective observational study

    Get PDF
    [Background] Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease that leads to respiratory failure and death. Although there is a greater understanding of the etiology of this disease, accurately predicting the disease course in individual patients is still not possible. This study aimed to evaluate serum cytokines/chemokines as potential biomarkers that can predict outcomes in IPF patients. [Methods] A multi-institutional prospective two-stage discovery and validation design using two independent cohorts was adopted. For the discovery analysis, serum samples from 100 IPF patients and 32 healthy controls were examined using an unbiased, multiplex immunoassay of 48 cytokines/chemokines. The serum cytokine/chemokine values were compared between IPF patients and controls; the association between multiplex measurements and survival time was evaluated in IPF patients. In the validation analysis, the cytokines/chemokines identified in the discovery analysis were examined in serum samples from another 81 IPF patients to verify the ability of these cytokines/chemokines to predict survival. Immunohistochemical assessment of IPF-derived lung samples was also performed to determine where this novel biomarker is expressed. [Results] In the discovery cohort, 18 cytokines/chemokines were significantly elevated in sera from IPF patients compared with those from controls. Interleukin-1 receptor alpha (IL-1Rα), interleukin-8 (IL-8), macrophage inflammatory protein 1 alpha (MIP-1α), and cutaneous T-cell-attracting chemokine (CTACK) were associated with survival: IL-1Rα, hazard ratio (HR) = 1.04 per 10 units, 95% confidence interval (95% CI) 1.01–1.07; IL-8, HR = 1.04, 95% CI 1.01–1.08; MIP-1α, HR = 1.19, 95% CI 1.00–1.36; and CTACK, HR = 1.12 per 100 units, 95% CI 1.02–1.21. A replication analysis was performed only for CTACK because others were previously reported to be potential biomarkers of interstitial lung diseases. In the validation cohort, CTACK was associated with survival: HR = 1.14 per 100 units, 95% CI 1.01–1.28. Immunohistochemistry revealed the expression of CTACK and CC chemokine receptor 10 (a ligand of CTACK) in airway and type II alveolar epithelial cells of IPF patients but not in those of controls. [Conclusions] CTACK is a novel prognostic biomarker of IPF

    肺におけるRegnase-1は上皮細胞と獲得免疫細胞との相互作用を制御することにより呼吸器細菌感染防御に寄与する

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第21413号医博第4403号京都大学大学院医学研究科医学専攻(主査)教授 生田 宏一, 教授 伊達 洋至, 教授 中川 一路学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Preventive effects of cilostazol against the development of shunt-dependent hydrocephalus after subarachnoid hemorrhage

    No full text
    application/pdf内容の要旨・審査結果の要旨 / 三重大学大学院医学系研究科 生命医科学専攻 臨床医学系講座 脳神経外科学分

    Preventive effects of cilostazol against the development of shunt-dependent hydrocephalus after subarachnoid hemorrhage

    No full text
    application/pdfObjective Chronic hydrocephalus develops in association with the induction of tenascin-C (TNC), a matricellular protein, after aneurysmal subarachnoid hemorrhage (SAH). The aim of this study was to examine if cilostazol, a selective inhibitor of phosphodiesterase Type III, suppresses the development of chronic hydrocephalus by inhibiting TNC induction in aneurysmal SAH patients. Methods The authors retrospectively reviewed the factors influencing the development of chronic shunt-dependent hydrocephalus in 87 patients with Fisher Grade 3 SAH using multivariate logistic regression analyses. Cilostazol (50 or 100 mg administered 2 or 3 times per day) was administered from the day following aneurysmal obliteration according to the preference of the attending neurosurgeon. As a separate study, the effects of different dosages of cilostazol on the serum TNC levels were chronologically examined from Days 1 to 12 in 38 SAH patients with Fisher Grade 3 SAH. Resu lts Chronic hydrocephalus occurred in 12 of 36 (33.3%), 5 of 39 (12.8%), and 1 of 12 (8.3%) patients in the 0 mg/day, 100 to 200 mg/day, and 300 mg/day cilostazol groups, respectively. The multivariate analyses showed that older age (OR 1.10, 95% CI 1.13–1.24; p = 0.012), acute hydrocephalus (OR 23.28, 95% CI 1.75–729.83; p = 0.016), and cilostazol (OR 0.23, 95% CI 0.05–0.93; p = 0.038) independently affected the development of chronic hydrocephalus. Higher dosages of cilostazol more effectively suppressed the serum TNC levels through Days 1 to 12 post-SAH. Conclus ions Cilostazol may prevent the development of chronic hydrocephalus and reduce shunt surgery, possibly by the inhibition of TNC induction after SAH.本文 / Departments of Neurosurgery, Mie University Graduate School of Medicine8

    Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs

    Get PDF
    腸で鉄の吸収を調節するメカニズムの一端を解明 -- 貧血時に鉄吸収を促進するフィードバック機構を発見--. 京都大学プレスリリース. 2017-05-24.Iron metabolism is regulated by transcriptional and post-transcriptional mechanisms. The mRNA of the iron-controlling gene, transferrin receptor 1 (TfR1), has long been believed to be negatively regulated by a yet-unidentified endonuclease. Here, we show that the endonuclease Regnase-1 is critical for the degradation of mRNAs involved in iron metabolism in vivo. First, we demonstrate that Regnase-1 promotes TfR1 mRNA decay. Next, we show that Regnase-1−/− mice suffer from severe iron deficiency anemia, although hepcidin expression is downregulated. The iron deficiency anemia is induced by a defect in duodenal iron uptake. We reveal that duodenal Regnase-1 controls the expression of PHD3, which impairs duodenal iron uptake via HIF2α suppression. Finally, we show that Regnase-1 is a HIF2α-inducible gene and thus provides a positive feedback loop for HIF2α activation via PHD3. Collectively, these results demonstrate that Regnase-1-mediated regulation of iron-related transcripts is essential for the maintenance of iron homeostasis

    Nocturnal hypercapnia with daytime normocapnia in patients with advanced pulmonary arterial hypertension awaiting lung transplantation

    Get PDF
    Background: Pulmonary arterial hypertension (PAH) is frequently complicated by sleep disordered breathing (SDB), and previous studies have largely focused on hypoxemic SDB. Even though nocturnal hypercapnia was shown to exacerbate pulmonary hypertension, the clinical significance of nocturnal hypercapnia among PAH patients has been scarcely investigated. Method: Seventeen patients with PAH were identified from 246 consecutive patients referred to Kyoto University Hospital for the evaluation of lung transplant registration from January 2010 to December 2017. Included in this study were 13 patients whose nocturnal transcutaneous carbon dioxide partial pressure (PtcCO2) monitoring data were available. Nocturnal hypercapnia was diagnosed according to the guidelines of the American Academy of Sleep Medicine. Associations of nocturnal PtcCO2 measurements with clinical features, the findings of right heart catheterization and pulmonary function parameters were evaluated. Results: Nocturnal hypercapnia was diagnosed in six patients (46.2%), while no patient had daytime hypercapnia. Of note, nocturnal hypercapnia was found for 5 out of 6 patients with idiopathic PAH (83.3%). Mean nocturnal PtcCO2 levels correlated negatively with the percentage of predicted total lung capacity (TLC), and positively with cardiac output and cardiac index. Conclusion: Nocturnal hypercapnia was prevalent among advanced PAH patients who were waiting for lung transplantation, and associated with %TLC. Nocturnal hypercapnia was associated with the increase in cardiac output, which might potentially worsen pulmonary hypertension especially during sleep. Further studies are needed to investigate hemodynamics during sleep and to clarify whether nocturnal hypercapnia can be a therapeutic target for PAH patients
    corecore