46 research outputs found

    Changes on the Physiological Lactonase Activity of Serum Paraoxonase 1 by a Diet Intervention for Weight Loss in Healthy Overweight and Obese Women

    Get PDF
    Low caloric diet (LCD) is used for weight loss. Paraoxonase 1 (PON-1) is associated with the antioxidant functions of high-density lipoprotein (HDL). Among limited data on the relationships between obesity and PON-1, there has been no study on the effects of a stand-alone LCD on the physiological lactonase activity of PON-1. We investigated the prospective effects of LCD intervention (2 months) for weight loss on serum PON-1 activities (lactonase, arylesterase [mono-esterase] and tri-esterase) and HDL cholesterol (HDL-C), and their association with low-density lipoprotein cholesterol (LDL-C) in overweight and non-morbidly obese but otherwise healthy women (n = 30; mean age, 50.3 years; mean body mass index [BMI], 28.5 kg/m2). In addition to the data such as BMI, blood pressure, blood glucose and lipids, PON-1 activities were examined between pre- and post-intervention. The intervention reduced all metabolic outcomes, and PON-1 lactonase activity (determined with 5-[thiobutyl]butyrolactone) significantly decreased by 6.1%, paralleled by arylesterase (by 7.3%) and tri-esterase (by 7.8%). In multiple regression analysis, the percent change of PON-1 lactonase was significantly, positively and independently correlated to that of LDL-C (β = 0.51), HDL-C (β = 0.40), and BMI (β = 0.37). Our results showed that the solo diet treatment on weight loss might reduce serum PON-1 lactonase activity with reduced HDL-C and LDL-C. The relationship between the lactonase and LDL-C may be adaptive, plausibly hypothesizing less need for PON-1 activity as an antioxidant property to protect lipoproteins. Further research is needed to confirm this prediction

    miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation

    Get PDF
    MicroRNA-124 (miR-124) is evolutionarily highly conserved among species and one of the most abundantly expressed miRNAs in the developing and mature central nervous system (CNS). Previous studies reported that miR-124 plays a role in CNS development, such as neuronal differentiation, maturation, and survival. However, the role of miR-124 in normal brain function has not yet been revealed. Here, we subjected miR-124-1⁺/⁻ mice, to a comprehensive behavioral battery. We found that miR-124-1⁺/⁻ mice showed impaired prepulse inhibition (PPI), methamphetamine-induced hyperactivity, and social deficits. Whole cell recordings using prefrontal cortex (PFC) slices showed enhanced synaptic transmission in layer 5 pyramidal cells in the miR-124-1⁺/⁻ PFC. Based on the results of behavioral and electrophysiological analysis, we focused on genes involved in the dopaminergic system and identified a significant increase of Drd2 expression level in the miR-124-1⁺/⁻ PFC. Overexpression or knockdown of Drd2 in the control or miR-124-1⁺/⁻ PFC demonstrates that aberrant Drd2 signaling leads to impaired PPI. Furthermore, we identified that expression of glucocorticoid receptor gene Nr3c1, which enhances Drd2 expression, increased in the miR-124-1⁺/⁻ PFC. Taken together, the current study suggests that miR-124 dosage modulates PFC function through repressing the Drd2 pathway, suggesting a critical role of miR-124 in normal PFC function

    Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior

    Get PDF
    Masking is a direct behavioral response to environmental changes and plays an important role in the temporal distribution of activity. However, the mechanisms responsible for masking remain unclear. Here we identify thermosensors and a possible neural circuit regulating temperature-dependent masking behavior in mice. Analysis of mice lacking thermosensitive transient receptor potential (TRP) channels (Trpv1/3/4 and Trpm2/8) reveals that temperature-dependent masking is impaired in Trpm2- and Trpm8-null mice. Several brain regions are activated during temperature-dependent masking, including the preoptic area (POA), known as the thermoregulatory center, the suprachiasmatic nucleus (SCN), which is the primary circadian pacemaker, the paraventricular nucleus of the thalamus (PVT), and the nucleus accumbens (NAc). The POA, SCN, PVT are interconnected, and the PVT sends dense projections to the NAc, a key brain region involved in wheel-running activity. Partial chemical lesion of the PVT attenuates masking, suggesting the involvement of the PVT in temperature-dependent masking behavior

    2-O-(β- d

    No full text

    Enhanced Exposure of Human Immunodeficiency Virus Type 1 Primary Isolate Neutralization Epitopes through Binding of CD4 Mimetic Compounds▿

    No full text
    N-(4-Chlorophenyl)-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide (NBD-556) is a low-molecular-weight compound that reportedly blocks the interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and its receptor CD4. We investigated whether the enhancement of binding of anti-gp120 monoclonal antibodies (MAbs) toward envelope (Env) protein with NBD-556 are similar to those of soluble CD4 (sCD4) by comparing the binding profiles of the individual MAbs to Env-expressing cell surfaces. In flow cytometric analyses, the binding profiles of anti-CD4-induced epitope (CD4i) MAbs toward NBD-556-pretreated Env-expressing cell surfaces were similar to the binding profiles toward sCD4-pretreated cell surfaces. To investigate the binding position of NBD-556 on gp120, we induced HIV-1 variants that were resistant to NBD-556 and sCD4 in vitro. At passage 21 in the presence of 50 μM NBD-556, two amino acid substitutions (S375N in C3 and A433T in C4) were identified. On the other hand, in the selection with sCD4, seven mutations (E211G, P212L, V255E, N280K, S375N, G380R, and G431E) appeared during the passages. The profiles of the mutations after the selections with NBD-556 and sCD4 were very similar in their three-dimensional positions. Moreover, combinations of NBD-556 with anti-gp120 MAbs showed highly synergistic interactions against HIV-1. We further found that after enhancing the neutralizing activity by adding NBD-556, the contemporaneous virus became highly sensitive to antibodies in the patient's plasma. These findings suggest that small compounds such as NBDs may enhance the neutralizing activities of CD4i and anti-V3 antibodies in vivo
    corecore