30 research outputs found

    Vinculin negatively regulates transcription of MT1-MMP through MEK/ERK pathway

    Get PDF
    13301甲第4170号博士(医学)金沢大学博士論文要旨Abstract 以下に掲載:Biochemical and Biophysical Research Communications 455(3-4) pp.251-255 2014. Elsevier. 共著者:Taisuke Yoshimoto, Takahisa Takino, Zichen Li, Takahiro Domoto, Hiroshi Sat

    Vinculin negatively regulates transcription of MT1-MMP through MEK/ERK pathway

    Get PDF
    Vinculin regulates a variety of cellular functions partly through stabilization of tumor suppressor PTEN. In order to study the role of vinculin in tumor progression other than PTEN stabilization, vinculin was knocked down in PTEN-deficient squamous cell carcinoma HSC-4 cells. Knockdown of vinculin induced phenotypical change by reducing cell-cell and cell-extracellular matrix adhesions, and enhanced MT1-MMP expression at transcription level and subsequent cell migration. Up-regulation of MT1-MMP transcription by vinculin knockdown was abrogated by ERK inhibition. These results suggest that vinculin negatively regulates malignant phenotype of tumor cells including MT1-MMP transcription through MEK/ERK pathway

    Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway

    Get PDF
    A histone acetyltransferase Tat-interacting protein 60 kDa (Tip60) regulates the DNA damage response by acetylating histone and remodeling chromatin. In addition to histone acetyltransferase activity, Tip60 is known to regulate a variety of cellular functions, including gene expression, DNA damage response, cell migration and apoptosis. Lower expression of Tip60 is observed in lymphomas, melanomas, breast, colon, and lung cancer. It is widely accepted that Tip60 functions as a tumor suppressor. However, a role of Tip60 in gliomas still remains unclear. In this study, we investigated the role of Tip60 in the malignant behavior of human gliomas. By quantitative RT-PCR analysis using fresh human brain tumor tissues from 55 patients, we found that lower Tip60 expression and higher membrane-type 1 matrix metalloproteinase (MT1-MMP) expression are associated with advanced tumor grade in glioma tissues. Knockdown of Tip60 in glioblastoma cells promoted cell adhesion, spreading and MT1-MMP transcription and thereby invasion, which was suppressed by inhibition of MT1-MMP and nuclear factor-kappa B (NF-κB) activity. We demonstrate for the first time that tumor suppressor Tip60 down-regulates cell adhesion and MT1-MMP expression and thereby invasion of glioblastoma cells by suppressing NF-κB pathway. © 2015, Springer Science+Business Media Dordrecht.Embargo Period 12 month

    Membrane-type 1 matrix metalloproteinase regulates fibronectin assembly and N-cadherin adhesion

    Get PDF
    Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell-matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell-matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation. © 2014 Elsevier Inc. All rights reserved

    Poster Session

    Get PDF
    International Symposium on Tumor Biology in Kanazawa & Symposium on Drug Discoverry in Academics 2014 [DATE]: January 23(Thu)-24(Fri),2014, [Place]:Kanazawa Excel Hotel Tpkyu, Kanazawa, Japan, [Organizers]:Kanazawa Association of Tumor Biologists / Cancer Research Institute, Kanazawa Universit
    corecore