2,325 research outputs found

    Instanton and Superconductivity in Supersymmetric CP(N-1) Model

    Full text link
    The two dimensional supersymmetric CP(N-1) model has a striking similarity to the N=2 supersymmetric gauge theory in four dimensions. The BPS mass formula and the curve of the marginal stability (CMS), which exist in the four dimensional gauge theory, appears in this two dimensional CP(N-1) model. These two quntities are derived by a one-dimensional n-vector spin model in the large n limit for the N=2 case. This mapping is further investigated at the critical point. An application of the study of the BPS mass formula is proposed to the phenomena of the spin and charge separations in the Higgs phase.Comment: 6 page

    Noise Enhanced Stability in Fluctuating Metastable States

    Full text link
    We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced stability phenomenon in the system investigated: the average lifetime of the metastable state is greater than the time obtained in the absence of additive white noise. We obtain the parameter region of the fluctuating potential where the effect can be observed. The system investigated also exhibits a maximum of the lifetime as a function of the fluctuation rate of the potential.Comment: 7 pages, 5 figures, to appear in Phys. Rev. E vol. 69 (6),200

    Synthesis of as-grown superconducting MgB_2 thin films by molecular beam epitaxy in UHV conditions

    Full text link
    As-grown superconducting MgB_2 thin films have been grown on SrTiO_3(001), MgO(001), and Al_2O_3(0001) substrates by a molecular beam epitaxy (MBE) method with novel co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical properties of the films were studied by RHEED, XRD, electrical resistivity measurements, and SQUID magnetometer. The RHEED patterns indicate three-dimensional growth for MgB_2. The highest T_c determined by resistivity measurement was about 36K in these samples. And a clear Meissner effect below T_c was observed using magnetic susceptibility measurement. We will discuss the influence of B buffer layer on the structural and physical properties.Comment: 9 pages with 4 figures, ISS2003 proceedin

    Characterization of Acylated Anthocyanins in Callus Induced From Storage Root of Purple-Fleshed Sweet Potato, Ipomoea batatas L

    Get PDF
    Four anthocyanins were isolated from a highly pigmented callus induced from the storage root of purple-fleshed sweet potato (Ipomoea batatas L) cultivar Ayamurasaki. The anthocyanins were respectively identified as cyanidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D-glucopyranosyl)-β-D-glucopyranoside) -5-O-β-D-glucopyranoside, cyanidin 3-O-(2-O-(6-O-(E)-p -coumaroyl-β-D-glucopyranosyl)-6-O-(E)-caffeoyl-β-D-glucopyranoside)-5-O-β-D-glucopyranoside, cyanidin 3-O-(2-O-(6-O-(E)-p -coumaroyl-β-D-glucopyranosyl)-6-O-(E)-p-coumaroyl-β-D-glucopyranoside)- 5-O-β-D-glucopyranoside, and peonidin 3-O-(2-O-(6-O-(E)-p -coumaroyl-β-D-glucopyranosyl)-6-O-(E)-p-coumaroyl-β-D-glucopyranoside)-5-O-β-D-glucopyranoside by chemical and spectroscopic analyses. These anthocyanins were examined with respect to the stability in neutral aqueous solution as well as the radical scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. These acylated anthocyanins exhibited both higher stability and higher DPPH radical scavenging activity than corresponding nonacylated cyanidin and peonidin 3-O-sophoroside-5-O-glucosides

    Comparison of postoperative pulmonary function and air leakage between pleural closure vs. mesh-cover for intersegmental plane in segmentectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To prevent postoperative air leakage after lung segmentectomy, we used two methods for the intersegmental plane: closing it by suturing the pleural edge (pleural closure), or opening it with coverage using polyglycolic acid mesh and fibrin glue (mesh-cover). The preserved forced expiratory volume in one second (FEV<sub>1</sub>) of each lobe and the postoperative air leakage were compared between the two groups.</p> <p>Methods</p> <p>For 61 patients who underwent pleural closure and 36 patients who underwent mesh-cover, FEV<sub>1 </sub>of the lobe before and after segmentectomy was measured using lung-perfusion single-photon-emission computed tomography and CT (SPECT/CT). The groups' results were compared, revealing differences of the preserved FEV<sub>1 </sub>of the lobe for several segmentectomy procedures and postoperative duration of chest tube drainage.</p> <p>Results</p> <p>Although left upper division segmentectomy showed higher preserved FEV<sub>1 </sub>of the lobe in the mesh-cover group than in the pleural closure one (<it>p </it>= 0.06), the other segmentectomy procedures showed no differences between the groups. The durations of postoperative chest drainage in the two groups (2.0 ± 2.5 vs. 2.3 ± 2.2 days) were not different.</p> <p>Conclusions</p> <p>Mesh-cover preserved the pulmonary function of remaining segments better than the pleural closure method in left upper division segmentectomy, although no superiority was found in the other segmentectomy procedures. However, the data include no results obtained using a stapler, which cuts the segment without recognizing even the intersegmental plane and the intersegmental vein. Mesh-cover prevented postoperative air leakage as well as the pleural closure method did.</p

    Combined subsegmentectomy: postoperative pulmonary function compared to multiple segmental resection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For small peripheral c-T1N0M0 non-small cell lung cancers involving multiple segments, we have conducted a resection of subsegments belonging to different segments, i.e. combined subsegmentectomy (CSS), to avoid resection of multiple segments or lobectomy. Tumor size, location of tumor, and forced expiratory volume in 1 second (FEV<sub>1</sub>) of each preserved lobe were compared among the CSS, resection of single segment, and that of multiple segments.</p> <p>Methods</p> <p>FEV<sub>1 </sub>of each preserved lobe were examined in 17 patients who underwent CSS, 56 who underwent resection of single segment, and 41 who underwent resection of multiple segments, by measuring pulmonary function and lung-perfusion single-photon-emission computed tomography and computed tomography before and after surgery.</p> <p>Results</p> <p>Tumor size in the CSS was significantly smaller than that in the resection of multiple segments (1.4 ± 0.5 vs. 2.0 ± 0.8 cm, p = 0.002). Tumors in the CSS were located in the right upper lobe more frequently than those in the resection of multiple segments (53% vs. 5%, p < 0.001). Postoperative of FEV<sub>1 </sub>of each lobe after the CSS was higher than that after the resection of multiple segments (0.3 ± 0.2 vs. 0.2 ± 0.2 l, p = 0.07). Mean FEV<sub>1 </sub>of each preserved lobe per subsegment after CSS was significantly higher than that after resection of multiple segments (0.05 ± 0.03 vs. 0.03 ± 0.02 l, p = 0.02). There was no significant difference of these factors between the CSS and resection of single segment.</p> <p>Conclusions</p> <p>The CSS is effective for preserving pulmonary function of each lobe, especially for small sized lung cancer involving multiple segments in the right upper lobe, which has fewer segments than other lobes.</p

    Structural and dynamical properties of liquid Si. An orbital-free molecular dynamics study

    Full text link
    Several static and dynamic properties of liquid silicon near melting have been determined from an orbital free {\em ab-initio} molecular dynamics simulation. The calculated static structure is in good agreement with the available X-ray and neutron diffraction data. The dynamical structure shows collective density excitations with an associated dispersion relation which closely follows recent experimental data. It is found that liquid silicon can not sustain the propagation of shear waves which can be related to the power spectrum of the velocity autocorrelation function. Accurate estimates have also been obtained for several transport coefficients. The overall picture is that the dynamic properties have many characteristics of the simple liquid metals although some conspicuous differences have been found.Comment: 12 pages, 11 figure

    Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    Full text link
    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critical wave number squared. Contrary to this, wave number isn't explicitly effective with lack of flow or constant flow. Thus, spatial size of pattern is especially important for regulating pattern formation in the plasmodium. On the other hand, the flow term is negligible in the vicinity of bifurcation at infinitely small wave number, and therefore the pattern formation by simple reaction-diffusion will also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
    corecore