398 research outputs found
Suppression of cell cycle progression by Jun dimerization protein (JDP2) involves down-regulation of cyclin A2
We report here a novel role for Jun dimerization protein-2 (JDP2) as a regulator of the progression of normal cells through the cell cycle. To determine the role of JDP2 in vivo, we generated Jdp2 knock-out (Jdp2KO) mice by targeting exon 1 to disrupt the site of initiation of transcription. The healing of wounded skin of Jdp2KO mice proceeded more rapidly than that of control mice and more proliferating cells were found at wound margins. Fibroblasts derived from embryos of Jdp2KO mice proliferated more rapidly and formed more colonies than wild-type fibroblasts. JDP2 was recruited to the promoter of the gene for cyclin A2 (ccna2) at a previously unidentified AP-1 site. Cells lacking Jdp2 had elevated levels of cyclin A2 mRNA. Moreover, reintroduction of JDP2 resulted in repression of transcription of ccna2 and of cell cycle progression. Thus, transcription of the gene for cyclin A2 appears to be a direct target of JDP2 in the suppression of cell proliferation
Generation of human GAPDH knock-in reporter iPSC lines for stable expression of tdTomato in pluripotent and differentiated culture conditions
Human induced pluripotent stem cells (iPSCs) can differentiate into multiple cell types and are utilized for research on human development and regenerative medicine. Here, we report the establishment of human GAPDH knock-in reporter iPSC lines (GAPDH-tdT1 and 2), via CRISPR/Cas9-mediated homologous recombination, that stably express tdTomato as a constitutive cell label in both iPSCs and their differentiated derivatives. These cell lines will provide useful tools to trace cell locations and fates in 2D cultures and 3D organoids and will facilitate in vivo experiments
GPI Glycan Remodeling by PGAP5 Regulates Transport of GPI-Anchored Proteins from the ER to the Golgi
SummaryMany eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway
Simultaneous Screening of 24 Target Genes of Foodborne Pathogens in 35 Foodborne Outbreaks Using Multiplex Real-Time SYBR Green PCR Analysis
A set of 8 multiplex real-time SYBR Green PCR (SG-PCR) assays including 3 target primers and an internal amplification control (IAC) primer was simultaneously evaluated in 3āh or less with regard to detection of 24 target genes of 23 foodborne pathogens in 7 stool specimens of foodborne outbreak using a 96-well reaction plate. This assay, combined with DNA extraction (QIAamp DNA Stool Mini kit), offered detection of greater than 103-104 foodborne pathogens per g in stool specimens. The products formed were identified using melting point temperature (Tm) curve analysis. This assay was evaluated for the detection of foodborne pathogens in 33 out of 35 cases of foodborne outbreak, using 4 different PCR instruments in 5 different laboratories. No interference from the multiplex real-time SG-PCR assay, including IAC, was observed in stool specimens in any analysis. We found multiplex real-time SG-PCR assay for simultaneous detection of 24 target genes of foodborne pathogens to be comprehensive, rapid, inexpensive, accurate, of high selectivity, and good for screening probability
Solution structure and dynamics of mouse ARMET
AbstractARMET is an endoplasmic reticulum (ER) stress-inducible protein that is required for maintaining cell viability under ER stress conditions. However, the exact molecular mechanisms by which ARMET protects cells are unknown. Here, we have analyzed the solution structure of ARMET. ARMET has an entirely Ī±-helical structure, which is composed of two distinct domains. Positive charges are dispersed on the surfaces of both domains and across a linker structure. Trypsin digestion and 15N relaxation experiments indicate that the tumbling of the N-terminal and C-terminal domains is effectively independent. These results suggest that ARMET may hold a negatively charged molecule using the two positively charged domains
A novel CACNA1A nonsense variant in a patient presenting with paroxysmal exertion-induced dyskinesia
ArticleJOURNAL OF THE NEUROLOGICAL SCIENCES. 399:214-216 (2019)journal articl
Quantum spin state stabilized by coupling with classical spins
We introduce a model compound featuring a spin-1/2 frustrated square lattice
partially coupled by spin-5/2. A significant magnetization plateau exceeding 60
T could be observed, indicating a quantum state formed by = 1/2 spins in
the square lattice. The remaining = 5/2 spins exhibited paramagnetic
behavior in the low-field regions. The numerical analysis confirmed that the
observed quantum state is a many-body entangled state based on the dominant AF
interactions and is strongly stabilized by coupling with spin-5/2. The
stabilization of this quantum state can be attributed to a compensation effect
similar to magnetic field-induced superconductivity, which serves as a strategy
to control the stability of quantum spin states in magnetic fields.Comment: 6 pages, 4 figure
- ā¦