48 research outputs found
Effectiveness of a hybrid emergency room system in the management of acute ischemic stroke: a single-center experience
IntroductionHybrid emergency room systems (HERSs) have shown promise for the management of severe trauma by reducing mortality. However, the effectiveness of HERSs in the treatment of acute ischemic stroke (AIS) remains unclear. This study aimed to evaluate the impact of HERSs on treatment duration and neurological outcomes in patients with AIS undergoing endovascular therapy.Materials and methodsThis single-center retrospective study included 83 patients with AIS who were directly transported to our emergency department and underwent endovascular treatment between June 2017 and December 2023. Patients were divided into the HERS and conventional groups based on the utilization of HERSs. The primary outcome was the proportion of patients achieving a favorable neurological outcome (modified Rankin Scale score 0–2) at 30 days. The secondary outcomes included door-to-puncture and door-to-recanalization times. Univariate analysis was performed using the Mann–Whitney U test for continuous variables and the chi-squared test or Fisher’s exact test for categorical variables, as appropriate.ResultsOf the 83 eligible patients, 50 (60.2%) were assigned to the HERS group and 33 (39.8%) to the conventional group. The median door-to-puncture time was significantly shorter in the HERS group than in the conventional group (99.5 vs. 131 min; p = 0.001). Similarly, the median door-to-recanalization time was significantly shorter in the HERS group (162.5 vs. 201.5 min, p = 0.018). Favorable neurological outcomes were achieved in 16/50 (32.0%) patients in the HERS group and 6/33 (18.2%) in the conventional group. The HERS and conventional groups showed no significant difference in the proportion of patients achieving favorable neurological outcomes (p = 0.21).ConclusionImplementation of the HERS significantly reduced the door-to-puncture and door-to-recanalization times in patients with AIS undergoing endovascular therapy. Despite these reductions in treatment duration, no significant improvement in neurological outcomes was observed. Further research is required to optimize patient selection and treatment strategies to maximize the benefits of the HERS in AIS management
DLPFC and KYN in MDD treatment response
Aim: To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features. This study aimed to determine the relationship between regional brain activity at rest and blood metabolites related to treatment response to escitalopram to identify the characteristics of depression that respond to treatment.
Methods: Blood metabolite levels and resting-state brain activity were measured in patients with moderate to severe depression (n = 65) before and after 6–8 weeks of treatment with escitalopram, and these were compared between Responders and Nonresponders to treatment. We then examined the relationship between blood metabolites and brain activity related to treatment responsiveness in patients and healthy controls (n = 36).
Results: Thirty-two patients (49.2%) showed a clinical response (>50% reduction in the Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. The pretreatment fractional amplitude of low-frequency fluctuation (fALFF) value of the left dorsolateral prefrontal cortex (DLPFC) and plasma kynurenine levels were lower in Responders, and the rate of increase of both after treatment was correlated with an improvement in symptoms. Moreover, the fALFF value of the left DLPFC was significantly correlated with plasma kynurenine levels in pretreatment patients with depression and healthy controls.
Conclusion: Decreased resting-state regional activity of the left DLPFC and decreased plasma kynurenine levels may predict treatment response to escitalopram, suggesting that it may be involved in the pathophysiology of major depressive disorder in response to escitalopram treatment
Oil Price Fluctuations and Oil Consuming Sectors: An Empirical Analysis of Japan
Since the oil price shocks of the 1970s, several studies have found significant impacts of oil prices on macro variables. However, it is particularly crucial to know how each micro sector in an economy, such as the residential, transport, industrial and non-energy sectors, respond to oil price impulses. In this research, we try to shed light on the impact of crude oil price volatility on each sector in Japan, the world's third-largest crude oil consumer. In order to do so, we apply a vector auto regression model and perform impulse response analysis by using quarterly data from Q1 1990 to Q1 2014. The findings indicate that some economic sectors, such as the residential sector, did not have significant sensitivity to the sharp oil price fluctuations. In contrast, some other sectors, like the commercial, industrial, and transport sectors, were strongly sensitive to the drastic oil price fluctuations. Moreover, our findings show that after the Fukushima disaster in 2011, which led to the shutdown of nuclear power plants in Japan, because of greater reliance on oil imports, the sensitivity of most sectors to oil price volatility declined
The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells
We demonstrated that low dose pulsed radiation (0.25 Gy) at a high-dose-rate, even for very short intervals (10 s), decreases cell survival to a greater extent than single exposure to a similar total dose and dose rate. The objective of this study was to clarify whether high-dose-rate pulsed radiation is effective against SAS-R, a clinically relevant radioresistant cell line. Cell survival following high-dose-rate pulsed radiation was evaluated via a colony assay. Flow cytometry was utilized to evaluate γH2AX, a molecular marker of DNA double-strand breaks and delayed reactive oxygen species (ROS) associated with radiation-induced apoptosis. Increased cytotoxicity was observed in SAS-R and parent SAS cells in response to high dose rate pulsed radiation compared to single dose, as determined by colony assays. Residual γH2AX in both cells subjected to high-dose-rate pulsed radiation showed a tendency to increase, with a significant increase observed in SAS cells at 72 h. In addition, high-dose-rate pulsed radiation increased delayed ROS more than the single exposure did. These results indicate that high-dose-rate pulsed radiation was associated with residual γH2AX and delayed ROS, and high-dose-rate pulsed radiation may be used as an effective radiotherapy procedure against radioresistant cells