219 research outputs found
Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases
Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). HO-1 is a stress-responsive protein induced by various oxidative agents. Recent studies demonstrate that the expression of HO-1 in response to different inflammatory mediators may contribute to the resolution of inflammation and has protective effects in several organs against oxidative injury. Although the mechanism underlying the anti-inflammatory actions of HO-1 remains poorly defined, both CO and biliverdin/bilirubin have been implicated in this response. In the gastrointestinal tract, HO-1 is shown to be transcriptionally induced in response to oxidative stress, preconditioning and acute inflammation. Recent studies suggest that the induction of HO-1 expression plays a critical protective role in intestinal damage models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid, and dextran sulfate sodium, indicating that activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in the gastrointestinal tract. In addition, CO derived from HO-1 is shown to be involved in the regulation in gastro-intestinal motility. These in vitro and in vivo data suggest that HO-1 may be a novel therapeutic target in patients with gastrointestinal diseases
Improvement in the neutron beam collimation for application in boron neutron capture therapy of the head and neck region
In June 2020, the Japanese government approved boron neutron capture therapy for the treatment of head and neck cancer. The treatment is usually performed in a single fraction, with the neutron irradiation time being approximately 30–60 min. As neutrons scatter in air and loses its intensity, it is preferable to bring the patient as close to the beam port as possible to shorten the irradiation time. However, this can be a challenge, especially for patients with head and neck cancer, as the shoulders are an obstacle to a clean positioning. In this study, a novel neutron collimation system for an accelerator based neutron source was designed to allow for a more comfortable treatment, without compromising the irradiation time. Experimental measurements confirmed the simulation results and showed the new collimator can reduce the irradiation time by approximately 60% (under the same condition where the distance between the source and the patient surface was kept the same). The dose delivered to the surrounding healthy tissue was reduced with the new collimator, showing a 25% decrease in the D₅₀ of the mucosal membrane. Overall, the use of the newly designed collimator will allow for a more comfortable treatment of the head and neck region, reduce the treatment time, and reduce the dose delivered to the surrounding healthy tissue
Role of histamine H3 receptor in glucagon-secreting αTC1.6 cells
AbstractPancreatic α-cells secrete glucagon to maintain energy homeostasis. Although histamine has an important role in energy homeostasis, the expression and function of histamine receptors in pancreatic α-cells remains unknown. We found that the histamine H3 receptor (H3R) was expressed in mouse pancreatic α-cells and αTC1.6 cells, a mouse pancreatic α-cell line. H3R inhibited glucagon secretion from αTC1.6 cells by inhibiting an increase in intracellular Ca2+ concentration. We also found that immepip, a selective H3R agonist, decreased serum glucagon concentration in rats. These results suggest that H3R modulates glucagon secretion from pancreatic α-cells
Humanized anti-interleukin-6-receptor antibody (tocilizumab) monotherapy is more effective in slowing radiographic progression in patients with rheumatoid arthritis at high baseline risk for structural damage evaluated with levels of biomarkers, radiography, and BMI: data from the SAMURAI study
Our aim was to assess the ability of tocilizumab monotherapy to reduce progressive structural joint damage in rheumatoid arthritis patients at high risk of progression. This study was a subanalysis from a prospective 1-year, multicenter, X-ray-reader-blinded, randomized controlled trial of tocilizumab [Study of Active Controlled Monotherapy Used for Rheumatoid Arthritis, an IL-6 Inhibitor (SAMURAI) trial]. All patients were categorized into two or three groups according to four independent predictive markers for progressive joint damage [urinary C-terminal crosslinking telopeptide (uCTX-II), urinary pyridinoline/deoxypyridinoline (uPYD/DPD) ratio, body mass index (BMI), and joint-space narrowing (JSN) score at baseline]. One-year progression of joint destruction was assessed in high-risk versus low-risk groups receiving tocilizumab monotherapy and compared with patients receiving conventional disease-modifying antirheumatic drugs (DMARDs) (n = 157 and 145, respectively). In patients at high risk of progression of erosion as estimated by high uCTX-II, uPYD/DPD, or low BMI, and at high risk of progression of JSN as estimated by low BMI or high JSN score, the 52-week changes in radiological erosion and JSN, respectively, were significantly less in patients treated with tocilizumab monotherapy compared with those receiving DMARDs for each type of risk factor. In patients at low risk, those receiving tocilizumab also progressed less than those on DMARDs, although the difference did not reach statistical significance. Tocilizumab monotherapy is more effective in reducing radiological progression in patients presenting with risk factors for rapid progression than in low-risk patients. Patients at high risk for progression may benefit more from tocilizumab treatment
[11C]Doxepin binding to histamine H1 receptors in living human brain: reproducibility during attentive waking and circadian rhythm
Molecular imaging in neuroscience is a new research field that enables visualization of the impact of molecular events on brain structure and function in humans. While magnetic resonance-based imaging techniques can provide complex information at the level of system, positron emission tomography (PET) enables determination of the distribution and density of receptor and enzyme in the human brain. Previous studies using [11C]raclopride and [11C]FLB457 revealed that the release of neuronal dopamine was increased in human brain by psychostimulants or reward stimuli. Following on from these previous [11C]raclopride studies, we examined whether the levels of neuronal release of histamine might change [11C]doxepin binding to the H1 receptors under the influence of physiological stimuli. The purpose of the present study was to evaluate the test–retest reliability of quantitative measurement of [11C]doxepin binding between morning and afternoon and between resting and attentive waking conditions in healthy human subjects. There was a trend for a decrease in [11C]doxepin binding during attentive calculation tasks compared with that in resting conditions, but the difference (less than 10%) was not significant. Similarly, the binding potential of [11C]doxepin in the cerebral cortex was slightly higher in the morning than that in the afternoon, but it was also insignificant. These data suggest that higher histamine release during wakefulness could not decrease the [11C]doxepin binding in the brain. This study confirmed the reproducibility and reliability of [11C]doxepin in the previous imaging studies to measure the H1 receptor
Associations of HIV testing and late diagnosis at a Japanese university hospital
OBJECTIVES: This study was conducted to clarify the rate of late diagnosis of HIV infection and to identify relationships between the reasons for HIV testing and a late diagnosis. METHODS: This retrospective cohort study was conducted among HIV-positive patients at the Jikei University Hospital between 2001 and 2014. Patient characteristics from medical records, including age, sex, sexuality, the reason for HIV testing and the number of CD4-positive lymphocytes at HIV diagnosis, were assessed. RESULTS: A total of 459 patients (men, n=437; 95.2%) were included in this study and the median age at HIV diagnosis was 36 years (range, 18-71 years). Late (CD4 cell coun
Percutaneous Endoscopic Gastrostomy, Duodenostomy and Jejunostomy
Although enteral feeding by nasal gastric tube is popular for the patients who have a swallowing disability and require long-term nutritional support, but have intact gut, this tube sometimes causes aspiration
pneumonia or esophageal ulcer. For these patients, conventional techniques for performance
of a feeding gastrostomy made by surgical laparotomy have been used so far. However, these patients
are frequently poor anesthetic and operative risks. Percutaneous endoscopic gastrostomy (PEG)
which can be accomplished with local anesthesia and without the necessity for laparotomy has become
popular in the clinical treatment for these patients. PEG was performed in 31 cases, percutaneous endoscopic duodenostomy (PED) in 1 case, and percutaneous endoscopic jejunostomy (PEJ)
in 2 cases. All patients were successfully placed, and no major complication and few minor complications
(9%) were experienced in this procedure. After this procedure, some patients could discharge
their sputa easily and their pneumonia subsided. PED and PEJ for the patients who had previously
received gastrostomy could also be done successfully with great care. Our experience suggests that
PEG, PED, and PEJ are rapid, safe, and useful procedures for the patients who have poor anesthetic
or poor operative risks
- …