76 research outputs found

    Antigen-Specific Polyclonal Cytotoxic T Lymphocytes Induced by Fusions of Dendritic Cells and Tumor Cells

    Get PDF
    The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs) that can reduce the tumor mass. Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science and Technology of Japan, Grant-in-Aid of the Japan Medical Association, Takeda Science Foundation, Pancreas Research Foundation of Japan, The Promotion and Mutual Aid Corporation for Private School of Japan and Foundation for Promotion of Cancer Researc

    Regulation of Tumor Immunity by Tumor/Dendritic Cell Fusions

    Get PDF
    The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.Foundation for the Promotion of Cancer Research; Mitsui Life Social Welfare Foundation; Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science, and Technology of Japan; Grant-in-Aid of the Japan Medical Association; Takeda Science Foundation; Pancreas Research Foundation of Japa

    Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    Get PDF
    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination

    Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Get PDF
    Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell

    Prevalence and predictors of direct discharge home following hospitalization of patients with serious adverse events managed by the rapid response system in Japan: a multicenter, retrospective, observational study

    Get PDF
    Aim: The rapid response system (RRS) is an in-hospital medical safety system. To date, not much is known about patient disposition after RRS activation, especially discharge home. This study aimed to investigate the prevalence, characteristics, and outcomes of patients with adverse events who required RRS activation. Methods: Retrospective data from the In-Hospital Emergency Registry in Japan collected from April 2016 to November 2020 were eligible for our analysis. We divided patients into Home Discharge, Transfer, and Death groups. The primary outcome was the prevalence of direct discharge home, and independently associated factors were determined using multivariable logistic regression. Results: We enrolled 2,043 patients who met the inclusion criteria. The prevalence of discharge home was 45.7%; 934 patients were included in the Home Discharge group. Age (adjusted odds ratio [AOR] 0.96; 95% confidence interval [CI], 0.95-0.97), malignancy (AOR 0.69; 95% CI, 0.48-0.99), oxygen administration before RRS (AOR 0.49; 95% CI, 0.36-0.66), cerebral performance category score on admission (AOR 0.38; 95% CI, 0.26-0.56), do not attempt resuscitation order before RRS (AOR 0.17; 95% CI, 0.10-0.29), RRS call for respiratory failure (AOR 0.50; 95% CI, 0.34-0.72), RRS call for stroke (AOR 0.12; 95% CI, 0.03-0.37), and intubation (AOR 0.20; 95% CI, 0.12-0.34) were independently negative, and RRS call for anaphylaxis (AOR 15.3; 95% CI, 2.72-86.3) was positively associated with discharge home. Conclusion: Less than half of the in-hospital patients under RRS activation could discharge home. Patients' conditions before RRS activation, disorders requiring RRS activation, and intubation were factors that affected direct discharge home
    corecore