38 research outputs found
Herbal Medicine Ninjin'yoeito in the Treatment of Sarcopenia and Frailty
Frailty and sarcopenia have recently gained considerable attention in terms of preventive care in Japan, which has an ever-increasing aging population. Sarcopenia is defined as atrophy of skeletal muscles caused by the age-related decrease in growth hormone/insulin-like growth factor and sex hormones. The Japanese Ministry of Health, Labor and Welfare reports that frailty can lead to impairment of both mental and physical functioning. Chronic diseases such as diabetes and dementia may underlie frailty. It is important to prevent progression of frailty and extend the healthy lifespan. In herbal medicine practice, including Japanese Kampo medicine, “Mibyo,” a presymptomatic state, has long been recognized and may be applicable to frailty. Kampo medicines may include several medicinal plants and are thought to have the potential to improve symptoms of frailty, such as loss of appetite and body weight, fatigue, and sarcopenia, as well as anxiety, depression, and cognitive decline. Ninjin'yoeito (Ren Shen Yang Ying Tang) is the most powerful Kampo medicine and has been widely applied to palliative care of cancer patients. This review includes recent anti-aging studies and describes the effects and mechanisms of Ninjin'yoeito (Ren Shen Yang Ying Tang) when used for frailty or to extend a healthy life expectancy
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
Hitomi (ASTRO-H) X-ray Astronomy Satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
The Effect of Particle Shape on Sintering Behavior and Compressive Strength of Porous Alumina
Alumina particles with different shapes, such as sphere, rod, and disk, were examined for the sintering behavior and compressive strength of partially sintered porous alumina. While both the spherical and disk-like particles were packed well to the relative density of 61.2–62.3%, the packing density of rod-like particles was only 33.5%. The sintering rate of alumina particles increased in the order of disk < rod < sphere. The compressive strength of sintered porous alumina was higher for the spherical particles than for the rod-like and disk-like particles. The uniform distribution of the applied load over many developed grain boundaries contributed to the increase in the compressive strength for the spherical particles. The applied load concentrated on a few grain boundaries of rod-like or disk-like particles, caused fracture at a low compressive stress
Compressive deformation of liquid phase-sintered porous silicon carbide ceramics
Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation