28 research outputs found

    RETRACTED: The Chromatin-Remodeling Complex WINAC Targets a Nuclear Receptor to Promoters and Is Impaired in Williams Syndrome

    Get PDF
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the Authors.Our paper reported that a chromatin-remodeling complex, WINAC, recruited the unliganded vitamin D receptor to promoters in cooperation with the transcription factor implicated in Williams syndrome, WSTF. The findings provided insights into the coordination between chromatin remodelers and sequence-specific transcription factors and pointed to a role of chromatin remodeling defects in Williams syndrome. We recently identified errors affecting several figure panels where original data were processed inappropriately such that the figure panels do not accurately report the original data. We believe that the most responsible course of action is to retract the paper. We sincerely apologize to the scientific community for any inconvenience that this might cause. The first author, H.K., declined to sign the retraction notice

    Switching of chromatin-remodelling complexes for oestrogen receptor-α

    No full text
    The female sex steroid hormone oestrogen stimulates both cell proliferation and cell differentiation in target tissues. These biological actions are mediated primarily through nuclear oestrogen receptors (ERs). The ligand-dependent transactivation of ERs requires several nuclear co-regulator complexes; however, the cell-cycle-dependent associations of these complexes are poorly understood. By using a synchronization system, we found that the transactivation function of ERα at G2/M was lowered. Biochemical approaches showed that ERα associated with two discrete classes of ATP-dependent chromatin-remodelling complex in a cell-cycle-dependent manner. The components of the NuRD-type complex were identified as G2/M-phase-specific ERα co-repressors. Thus, our results indicate that the transactivation function of ERα is cell-cycle dependent and is coupled with a cell-cycle-dependent association of chromatin-remodelling complexes

    Histological and biochemical evaluation of transforming growth factor-β activation and its clinical significance in patients with chronic liver disease

    No full text
    Transforming growth factor-β (TGF-β) is a key driver for liver fibrogenesis. TGF-β must be activated in order to function. Plasma kallikrein (PLK) is a TGF-β activator that cleaves the latency-associated protein (LAP) between arginine58 and lysine59 residues and releases active TGF-β from the latent TGF-β-LAP complex. Thus, the generation of two LAP degradation products, ending at arginine58 (R58/LAP-DPs) and beginning from lysine59 (L59/LAP-DPs), reflects PLK-dependent TGF-β activation. However, the significance and details of TGF-β activation in patients with chronic liver disease (CLD) remain uncertain. We herein examined the PLK-dependent TGF-β activation in patients by detecting R58 and L59/LAP-DPs. A total of 234 patients with CLD were included in this study. Liver biopsy specimens were used for immunostaining to detect R58/LAP-DPs, while plasma samples were subjected to an enzyme-linked immunosorbent assay to measure the L59/LAP-DP concentration. R58/LAP-DP was robustly expressed in and around the sinusoidal cells before the development of the fibrous regions. The R58/LAP-DP expression at fibrosis stage 1 was higher than at any other stages, and the relationship between the plasma L59/LAP-DP level and the stage of fibrosis also showed a similar trend. The abundance of plasma L59/LAP-DP showed no correlation with the levels of direct serum biomarkers of liver fibrosis; however, its changes during interferon-based therapy for chronic hepatitis C were significantly associated with virological responses. Our results suggest that PLK-dependent TGF-β activation occurs in the early stages of fibrosis and that its unique surrogate markers, R58 and L59/LAP-DPs, are useful for monitoring the clinical course of CLD
    corecore