14 research outputs found

    New Descriptor for Glomerulus Detection in Kidney Microscopy Image

    Get PDF
    Glomerulus detection is a key step in histopathological evaluation of microscopy images of kidneys. However, the task of automatic detection of glomeruli poses challenges due to the disparity in sizes and shapes of glomeruli in renal sections. Moreover, extensive variations of their intensities due to heterogeneity in immunohistochemistry staining are also encountered. Despite being widely recognized as a powerful descriptor for general object detection, the rectangular histogram of oriented gradients (Rectangular HOG) suffers from many false positives due to the aforementioned difficulties in the context of glomerulus detection. A new descriptor referred to as Segmental HOG is developed to perform a comprehensive detection of hundreds of glomeruli in images of whole kidney sections. The new descriptor possesses flexible blocks that can be adaptively fitted to input images to acquire robustness to deformations of glomeruli. Moreover, the novel segmentation technique employed herewith generates high quality segmentation outputs and the algorithm is assured to converge to an optimal solution. Consequently, experiments using real world image data reveal that Segmental HOG achieves significant improvements in detection performance compared to Rectangular HOG. The proposed descriptor and method for glomeruli detection present promising results and is expected to be useful in pathological evaluation

    Comprehensive genomic profiling for patients with chemotherapy‐naïve advanced cancer

    Get PDF
    Comprehensive genomic profiling (CGP) testing by next-generation sequencing has been introduced into clinical practice as part of precision cancer medicine to select effective targeted therapies. However, whether CGP testing at the time of first-line chemotherapy could be clinically useful is not clear. We conducted this single-center, prospective, observational study to investigate the feasibility of CGP testing for chemotherapy-naïve patients with stage III/IV gastrointestinal cancer, rare cancer, and cancer of unknown primary, using the FoundationOne® companion diagnostic (F1CDx) assay. The primary outcome was the detection rate of at least one actionable/druggable cancer genomic alteration. Actionable/druggable cancer genomic alterations were determined by the F1CDx report. An institutional molecular tumor board determined the molecular-based recommended therapies. A total of 197 patients were enrolled from October 2018 to June 2019. CGP success rate was 76.6% (151 of 197 patients), and median turnaround time was 19 days (range: 10-329 days). Actionable and druggable cancer genomic alterations were reported in 145 (73.6%) and 124 (62.9%) patients, respectively. The highest detection rate of druggable genomic alterations in gastrointestinal cancers was 80% in colorectal cancer (48 of 60 patients). Molecular-based recommended therapies were determined in 46 patients (23.4%). CGP testing would be a useful tool for the identification of a potentially effective first-line chemotherapy

    Protective effects of Alda-1, an ALDH2 activator, on alcohol-derived DNA damage in the esophagus of human ALDH2*2 (Glu504Lys) knock-in mice

    Get PDF
    Alcohol consumption is the key risk factor for the development of esophageal squamous cell carcinoma (ESCC), and acetaldehyde, a metabolite of alcohol, is an alcohol-derived major carcinogen that causes DNA damage. Aldehyde dehydrogenase2 (ALDH2) is an enzyme that detoxifies acetaldehyde, and its activity is reduced by ALDH2 gene polymorphism. Reduction in ALDH2 activity increases blood, salivary and breath acetaldehyde levels after alcohol intake, and it is deeply associated with the development of ESCC. Heavy alcohol consumption in individuals with ALDH2 gene polymorphism significantly elevates the risk of ESCC; however, effective prevention has not been established yet. In this study, we investigated the protective effects of Alda-1, a small molecule ALDH2 activator, on alcohol-mediated esophageal DNA damage. Here, we generated novel genetically engineered knock-in mice that express the human ALDH2*1 (wild-type allele) or ALDH2*2 gene (mutant allele). Those mice were crossed, and human ALDH2*1/*1, ALDH2*1/*2 and ALDH2*2/*2 knock-in mice were established. They were given 10% ethanol for 7 days in the presence or absence of Alda-1, and we measured the levels of esophageal DNA damage, represented by DNA adduct (N2-ethylidene-2′-deoxyguanosine). Alda-1 significantly increased hepatic ALDH2 activity both in human ALDH2*1/*2 and/or ALDH2*2/*2 knock-in mice and reduced esophageal DNA damage levels after alcohol drinking. Conversely, cyanamide, an ALDH2-inhibitor, significantly exacerbated esophageal DNA adduct level in C57BL/6N mice induced by alcohol drinking. These results indicate the protective effects of ALDH2 activation by Alda-1 on esophageal DNA damage levels in individuals with ALDH2 gene polymorphism, providing a new insight into acetaldehyde-mediated esophageal carcinogenesis and prevention
    corecore