5 research outputs found

    Sophisticated Framework between Cell Cycle Arrest and Apoptosis Induction Based on p53 Dynamics

    Get PDF
    The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis

    Non-Inductive Current Drive by EC Waves in an Inboard Poloidal Magnetic Field Null Configuration on the Spherical Tokamak QUEST

    Get PDF
    To investigate the effects of confinement of fast electrons on poloidal beta equilibrium, experiments under different toroidal magnetic mirror ratios, MOMFC, were performed in electron cyclotron heated plasma in the spherical tokamak QUEST. The proportional constants of the relation between plasma current and vertical magnetic fields decreased with increase in MOMFC. The poloidal field null point appeared in the chamber for MOMFC > 1.8 at a plasma current value of ∼15 kA. Poloidal beta and temperature of hard X-rays increased with MOMFC. This suggests that high poloidal beta equilibrium plasma is produced by better confinement of energetic trapped particles
    corecore