492 research outputs found
Classification of Standard Model Particles in Orbifold Grand Unified Theories
We classify the standard model fermions, which originate from bulk fields of
the or representation after orbifold breaking, in
grand unified theories on 5 or 6-dimensional space-time, under the
condition that , and survive as zero modes.Comment: 24 pages, typos corrected, to appear in IJMP
Stationary structures of irrotational binary systems -- models for close binary systems of compact stars
We propose a new numerical method to calculate irrotational binary systems
composed of compressible gaseous stars in Newtonian gravity. Assuming
irrotationality, i.e. vanishing of the vorticity vector everywhere in the star
in the inertial frame, we can introduce the velocity potential for the flow
field. Using this velocity potential we can derive a set of basic equations for
stationary states which consist of (i) the generalized Bernoulli equation, (ii)
the Poisson equation for the Newtonian gravitational potential and (iii) the
equation for the velocity potential with the Neumann type boundary condition.
We succeeded in developing a new code to compute numerically exact solutions to
these equations for the first time. Such irrotational configurations of binary
systems are appropriate models for realistic neutron star binaries composed of
inviscid gases, just prior to coalescence of two stars caused by emission of
gravitational waves. Accuracies of our numerical solutions are so high that we
can compute reliable models for fully deformed final stationary configurations
and hence determine the inner most stable circular orbit of binary neutron star
systems under the approximations of weak gravity and inviscid limit.Comment: 32 pages, 25 bitmapped ps files, to appear in ApJ supplemen
Critical Scale-invariance in Healthy Human Heart Rate
We demonstrate the robust scale-invariance in the probability density
function (PDF) of detrended healthy human heart rate increments, which is
preserved not only in a quiescent condition, but also in a dynamic state where
the mean level of heart rate is dramatically changing. This scale-independent
and fractal structure is markedly different from the scale-dependent PDF
evolution observed in a turbulent-like, cascade heart rate model. These results
strongly support the view that healthy human heart rate is controlled to
converge continually to a critical state.Comment: 9 pages, 3 figures. Phys. Rev. Lett., to appear (2004
Synchronization of spontaneous eyeblinks while viewing video stories
Blinks are generally suppressed during a task that requires visual attention and tend to occur immediately before or after the task when the timing of its onset and offset are explicitly given. During the viewing of video stories, blinks are expected to occur at explicit breaks such as scene changes. However, given that the scene length is unpredictable, there should also be appropriate timing for blinking within a scene to prevent temporal loss of critical visual information. Here, we show that spontaneous blinks were highly synchronized between and within subjects when they viewed the same short video stories, but were not explicitly tied to the scene breaks. Synchronized blinks occurred during scenes that required less attention such as at the conclusion of an action, during the absence of the main character, during a long shot and during repeated presentations of a similar scene. In contrast, blink synchronization was not observed when subjects viewed a background video or when they listened to a story read aloud. The results suggest that humans share a mechanism for controlling the timing of blinks that searches for an implicit timing that is appropriate to minimize the chance of losing critical information while viewing a stream of visual events
Isotropic orbital magnetic moments in magnetically anisotropic SrRuO3 films
Epitaxially strained SrRuO3 films have been a model system for understanding
the magnetic anisotropy in metallic oxides. In this paper, we investigate the
anisotropy of the Ru 4d and O 2p electronic structure and magnetic properties
using high-quality epitaxially strained (compressive and tensile) SrRuO3 films
grown by machine-learning-assisted molecular beam epitaxy. The element-specific
magnetic properties and the hybridization between the Ru 4d and O 2p orbitals
were characterized by Ru M2,3-edge and O K-edge soft X-ray absorption
spectroscopy and X-ray magnetic circular dichroism measurements. The
magnetization curves for the Ru 4d and O 2p magnetic moments are identical,
irrespective of the strain type, indicating the strong magnetic coupling
between the Ru and O ions. The electronic structure and the orbital magnetic
moment relative to the spin magnetic moment are isotropic despite the
perpendicular and in-plane magnetic anisotropy in the compressive-strained and
tensile-strained SrRuO3 films; i.e., the orbital magnetic moments have a
negligibly small contribution to the magnetic anisotropy. This result
contradicts Bruno model, where magnetic anisotropy arises from the difference
in the orbital magnetic moment between the perpendicular and in-plane
directions. Contributions of strain-induced electric quadrupole moments to the
magnetic anisotropy are discussed, too
- …