25 research outputs found

    Chryseobacterium indologenes Peritonitis in a Peritoneal Dialysis Patient: A Case Report and Review of Literature

    Get PDF
    Peritonitis is one of the most important complications in patients with peritoneal dialysis (PD). Appropriate antibiotic treatment against PD-associated peritonitis is necessary to prevent PD catheter removal and withdrawal from PD. Chryseobacterium indologenes is a Gram-negative rod that occurs in the natural environment. C. indologenes is thought to acquire resistance to β-lactam drugs through the production of metallo-β-lactamase and to become resistant to antibiotic therapy through the formation of biofilms. Only a few cases of PD-associated peritonitis caused by C. indologenes have been reported to date, and appropriate treatment strategies have not been clarified. In the past, 5 cases of PD-associated peritonitis caused by C. indologenes have been reported and 2 patients required catheter removal because of recurrence or refractoriness. In this case, a 51-year-old man with PD-associated peritonitis caused by C. indologenes was treated with 2 susceptible antibiotics, including fluoroquinolones to prevent acquired resistance and biofilm formation. There was no recurrence, and catheter removal was not necessary in this case. Collectively, the present case highlighted that PD-associated peritonitis caused by C. indologenes should be treated with 2 susceptible antibiotics including fluoroquinolones for 3 weeks

    Committee report : Questionnaire survey on the treatment of COVID-19 in patients receiving dialysis therapy

    Get PDF
    Background: Patients with coronavirus disease 2019 (COVID-19) who receive dialysis therapy develop more severe disease and have a poorer prognosis than patients who do not. Although various data on the treatment of patients not receiving dialysis therapy have been reported, clinical practice for patients on dialysis is challenging as data is limited. The Infection Control Committee of the Japanese Society for Dialysis Therapy decided to clarify the status of treatment in COVID-19 patients on dialysis. Methods: A questionnaire survey of 105 centers that had treated at least five COVID-19 patients on dialysis was conducted in August 2021. Results: Sixty-six centers (62.9%) responded to the questionnaire. Antivirals were administered in 27.7% of facilities treating mild disease (most patients received favipiravir) and 66.7% of facilities treating moderate disease (most patients with moderate or more severe conditions received remdesivir). Whether and how remdesivir is administered varies between centers. Steroids were initiated most frequently in moderate II disease (50.8%), while 43.1% of the facilities initiated steroids in mild or moderate I disease. The type of steroid, dose, and the duration of administration were generally consistent, with most facilities administering dexamethasone 6 mg orally or 6.6 mg intravenously for 10 days. Steroid pulse therapy was administered in 48.5% of the facilities, and tocilizumab was administered in 25.8% of the facilities, mainly to patients on ventilators or equivalent medications, or to the cases of exacerbations. Furthermore, some facilities used a polymethylmethacrylate membrane during dialysis, nafamostat as an anticoagulant, and continuous hemodiafiltration in severe cases. There was limited experience of polymyxin B-immobilized fiber column-direct hemoperfusion and extracorporeal membrane oxygenation. The discharge criteria for patients receiving dialysis therapy were longer than those set by the Ministry of Health, Labor and Welfare in 22.7% of the facilities. Conclusions: Our survey revealed a variety of treatment practices in each facility. Further evidence and innovations are required to improve the prognosis of patients with COVID-19 receiving dialysis therapy

    Investigation for the efficacy of COVID-19 vaccine in Japanese CKD patients treated with hemodialysis

    Get PDF
    Background: Dialysis patients are predisposed to severe disease and have a high mortality rate in coronavirus disease 2019 (COVID-19) due to their comorbidities and immunocompromised conditions. Therefore, dialysis patients should be prioritized for vaccination. This study aimed to examine how long the effects of the vaccine are maintained and what factors affect antibody titers. Methods: Hemodialysis patients (HD group) and age- and sex-matched non-dialysis individuals (Control group), receiving two doses of BNT162b2 vaccine, were recruited through the Japanese Society for Dialysis Therapy (JSDT) Web site in July 2021. Anti-SARS-CoV-2 immunoglobulin (IgG) (SARS-CoV-2 IgG titers) was measured before vaccination, 3 weeks after the first vaccination, 2 weeks after the second vaccination, and 3 months after the second vaccination, and was compared between Control group and HD group. Factors affecting SARS-CoV-2 IgG titers were also examined using multivariable regression analysis and stepwise regression analysis (least AIC). In addition, we compared adverse reactions in Control and HD groups and examined the relationship between adverse reactions and SARS-CoV-2 IgG titers. Results: Our study enrolled 123 participants in the Control group (62.6% men, median age 67.0 years) and 206 patients in the HD group (64.1% men, median age 66.4 years). HD group had significantly lower SARS-CoV-2 IgG titers at 3 weeks after the first vaccination (p < 0.0001), 2 weeks after second vaccination (p = 0.0002), and 3 months after the second vaccination (p = 0.045) than Control group. However, the reduction rate of SARS-CoV-2 IgG titers between 2 weeks and 3 months after the second vaccination was significantly smaller in HD group than in Control (p = 0.048). Stepwise regression analysis revealed that dialysis time was identified as the significant independent factors for SARS-CoV-2 IgG titers at 2 weeks after the second vaccination in HD group (p = 0.002) and longer dialysis time resulted in higher maximum antibody titers. The incidences of fever and nausea after the second vaccination were significantly higher in the HD group (p = 0.039 and p = 0.020). Antibody titers in those with fever were significantly higher than those without fever in both groups (HD: p = 0.0383, Control: p = 0.0096). Conclusion: HD patients had significantly lower antibody titers than age- and sex-matched non-dialysis individuals over 3 months after vaccination. Dialysis time was identified as a factor affecting SARS-CoV-2 IgG titers in HD group, with longer dialysis time resulting in higher maximum SARS-CoV-2 IgG titers

    T-Cell Response and Antibody Production Induced by the COVID-19 Booster Vaccine in Japanese Chronic Kidney Disease Patients Treated with Hemodialysis

    Get PDF
    Humoral and cellular responses are critical in understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Here, we evaluated these responses in hemodialysis (HD) patients after the booster vaccination. SARS-CoV-2 immunoglobulin (IgG) levels, neutralizing antibody titers, and the T-SPOT®.COVID test (T-SPOT) were measured prior to, three weeks after, and three months after the booster administration. The HD group had significantly higher SARS-CoV-2 IgG levels and neutralizing antibody titers against the original strain at three weeks and three months after the booster vaccination compared to the control group, albeit the HD group had lower SARS-CoV-2 IgG levels and neutralizing antibody titers before the booster administration. Moreover, the HD group had significantly higher T-SPOT levels at all three time points compared to the control group. The HD group also had significantly higher local and systemic adverse reaction rates than the control group. By booster vaccination, HD patients could acquire more effective SARS-CoV-2-specific humoral and cellular immunity than the control group

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Negative conversion of T-SPOT results after hemodialysis: case series and literature review

    No full text
    Abstract Background Latent tuberculosis infection (LTBI) affects 11.9% of outpatients under maintenance hemodialysis in Japan. In addition, the risk of reactivation of LTBI in hemodialysis patients is up to 10–25 times higher than that in the general population. Therefore, the accurate diagnosis and treatment for LTBI are extremely important. The interferon-γ release assays are widely used for screening LTBI; however, the impact of hemodialysis on the assay results has been uncertain. Case presentation Twenty-seven hemodialysis patients (17 males, 69.9 ± 10.1 year old) were performed T-SPOT®.TB test (T-SPOT) both before and after hemodialysis. In cases where T-SPOT results were different before and after hemodialysis, T-SPOT was re-evaluated in a same manner. As a result, two cases showed consistent T-SPOT diagnostic discrepancy before and after hemodialysis in two measurements. In the first case, T-SPOT was indeterminate/positive before hemodialysis, but changed to negative after hemodialysis. In the second case, T-SPOT was positive before hemodialysis, but changed to indeterminate after hemodialysis. Conclusions We experienced the negative conversion of T-SPOT after hemodialysis in cases of LTBI. T-SPOT may show false-negative when measured after hemodialysis due to immunomodulation caused by hemodialysis
    corecore