6,386 research outputs found
Benchmark Test of CP-PACS for Lattice QCD
The CP-PACS is a massively parallel computer dedicated for calculations in
computational physics and will be in operation in the spring of 1996 at Center
for Computational Physics, University of Tsukuba. In this article, we describe
the architecture of the CP-PACS and report the results of the estimate of the
performance of the CP-PACS for typical lattice QCD calculations.Comment: 12 pages (5 figures), Postscript file, talk presented at "QCD on
Massively Parallel Computers" (Yamagata, Japan, March 16-18,1995
A highly efficient single photon-single quantum dot interface
Semiconductor quantum dots are a promising system to build a solid state
quantum network. A critical step in this area is to build an efficient
interface between a stationary quantum bit and a flying one. In this chapter,
we show how cavity quantum electrodynamics allows us to efficiently interface a
single quantum dot with a propagating electromagnetic field. Beyond the well
known Purcell factor, we discuss the various parameters that need to be
optimized to build such an interface. We then review our recent progresses in
terms of fabrication of bright sources of indistinguishable single photons,
where a record brightness of 79% is obtained as well as a high degree of
indistinguishability of the emitted photons. Symmetrically, optical
nonlinearities at the very few photon level are demonstrated, by sending few
photon pulses at a quantum dot-cavity device operating in the strong coupling
regime. Perspectives and future challenges are briefly discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
- …