6,386 research outputs found

    Benchmark Test of CP-PACS for Lattice QCD

    Full text link
    The CP-PACS is a massively parallel computer dedicated for calculations in computational physics and will be in operation in the spring of 1996 at Center for Computational Physics, University of Tsukuba. In this article, we describe the architecture of the CP-PACS and report the results of the estimate of the performance of the CP-PACS for typical lattice QCD calculations.Comment: 12 pages (5 figures), Postscript file, talk presented at "QCD on Massively Parallel Computers" (Yamagata, Japan, March 16-18,1995

    A highly efficient single photon-single quantum dot interface

    Full text link
    Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79% is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel
    corecore