321 research outputs found

    Behavior of large shingle splices that simulate bridge joints

    Get PDF
    This paper summarizes the work on two full size simulated bridge joints and five small butt splices

    Uniting the Quiescent Emission and Burst Spectra of Magnetar Candidates

    Full text link
    Spectral studies of quiescent emission and bursts of magnetar candidates using XMM-Newton, Chandra and Swift data are presented. Spectra of both the quiescent emission and the bursts for most magnetar candidates are reproduced by a photoelectrically absorbed two blackbody function (2BB). There is a strong correlation between lower and higher temperatures of 2BB (kT_LT and kT_HT) for the magnetar candidates of which the spectra are well reproduced by 2BB. In addition, a square of radius for kT_T (R_LT^2) is well correlated with a square of radius for kT_HT (R_HT^2). A ratio kT_LT/kT_HT ~ 0.4 is nearly constant irrespective of objects and/or emission types (i.e., the quiescent emission and the bursts). This would imply a common emission mechanism among the magnetar candidates. The relation between the quiescent emission and the bursts might be analogous to a relation between microflares and solar flares of the sun. Three AXPs (4U 0142+614, 1RXS J170849.0-400910 and 1E 2259+586) seem to have an excess above ~7 keV which well agrees with a non-thermal hard component discovered by INTEGRAL.Comment: 17 pages, 5 figures, 12 tables, Accepted for publication in PAS

    Compressor with Turning-Paired Vane and Piston

    Get PDF
    With the aim of energy saving of room air conditioners, we are addressing higher efficiency of the rotary compressor that is used most in the world. We focused on a new rotary compressor equipped with a mechanism to restrict the rolling motion of the piston, and performed the dynamics analysis. The new rotary compressor has a small pillar at the tip of the vane and constitutes a turning pair of vane and piston, and it limits the rolling motion of the piston. By means of limiting the piston rotation, the heat transfer to the suction process from the compression chamber will be suppressed, and we can expect higher compression efficiency. Before examining the compression efficiency, we performed the dynamics analysis of this new rotary compressor and examined the forces and dynamic behavior of the components, and the mechanical efficiency of the compressor. Then we have following results. (1)We can clarify the contact point between the vane tip and piston in the turning pair by considering the equilibrium of forces and moments acting on the vane. (2)By reducing the diameter of the pillar at the vane tip, the vane tip friction loss is reduced, and the mechanical efficiency is improved. (3)The new rotary compressor has less vane tip friction loss and on the other hand greater friction loss between the vane side and the cylinder in comparison to the rolling piston rotary compressors. As a result, both compressors have almost the same mechanical efficiency

    Repair of root resorption 2 to 16 weeks after the application of continuous forces on maxillary first molars in rats: a 2- and 3-dimensional quantitative evaluation.

    Get PDF
    INTRODUCTION: Root resorption is a side effect of orthodontic treatment that occurs with the removal of hyalinized tissue. Studies have shown that a reparative process in the periodontium begins when the applied orthodontic force is discontinued or reduced below a certain level. However, quantitative 3-dimensional evaluation of root resorption repair has not been done. The aim of this study was to quantitatively assess the 2- and 3-dimensional changes of root resorption craters after 2 weeks of continuous mesially applied orthodontic forces of 50 g on rat molars and 2- to 16-week retention periods. METHODS: We used 60 male Wistar rats (10 weeks old). Nickel-titanium closed-coil springs were used to apply 50-g mesial forces for 2 weeks to move the maxillary left first molars. The rats were randomly allocated to 6 groups. Those in the zero-week retention group were killed after force application. In the remaining 5 groups, the interdental spaces between the maxillary first and second molars were filled with resin to retain the molars. The molars were extracted after periods of retention from 2 and 16 weeks. The maxillary right molars were used as the controls. Mesial and distal roots (distobuccal and distopalatal) were examined by using scanning electron and 3-dimensional scanning laser microscopes. The surface area, depth, volume, and roughness of the root resorption craters were measured. RESULTS: The area, depth, and volume of the craters decreased gradually and showed similar trends over the retention time, approaching a plateau at the 12th week. After 16 weeks of retention, the volumes of the resorption craters of the distobuccal and distopalatal roots reached recovery peaks of 69.5% and 66.7%, respectively. Small pits on the mesial roots showed recovery of 62.5% at the 12th week. The healing patterns in distal roots with severe resorption and mesial roots with shallow resorption had no significant differences. CONCLUSIONS: The resorption and repair processes during the early stages of retention are balanced, and most of the reparative process occurs after 4 weeks of passive retention after the application of orthodontic force. Frequent orthodontic reactivations should be avoided to allow recovery and repair of root surface damage

    Observation of the magnetoelectric reversal process of the antiferromagnetic domain

    Full text link
    We investigated the switching process of the perpendicular exchange bias, which is driven by the magnetoelectric effect, by conducting magnetic domain observations using scanning soft X-ray magnetic circular dichroism microscopy. Isothermal and simultaneous application of magnetic and electric fields switches the perpendicular exchange bias polarity. The switching process proceeds by the nucleation and growth of reversed domains. The correspondence among the ferromagnetic/antiferromagnetic domains and exchange bias polarity indicates that interfacial antiferromagnetic spin/domain reversal is responsible for the magnetoelectric switching of the perpendicular exchange bias polarity.Yu Shiratsuchi, Shunsuke Watanabe, Hiroaki Yoshida, Noriaki Kishida, Ryoichi Nakatani, Yoshinori Kotani, Kentaro Toyoki, and Tetsuya Nakamura, Appl. Phys. Lett. 113, 242404 (2018); https://doi.org/10.1063/1.5053925

    A severe skeletal Class III malocclusion treated with Le Fort I combined with sagittal split ramus osteotomy, mandibular body ostectomy and tongue reduction surgery. A case report

    Get PDF
    This case report describes the orthodontic-orthognathic management of a 17-year-old male patient with extremely severe skeletal Class III malocclusion due to a marked mandibular protrusion with a small and narrowed upper jaw which increased the remarkable concave facial profile. Dental articulation was entirely lacking, resulting in great difficulty in masticating food. A two-jaw surgery combined with mandibular body ostectomy was performed to correct mandibular asymmetry and the severe sagittal skeletal discrepancy (Wits appraisal –36.5 mm and ANB angle –14.3°). Bi-maxillary surgery was performed in two-stages; the first surgery consisted of maxillary advancement with Le Fort I osteotomy followed by a second surgery where a combination of sagittal split ramus osteotomy (SSRO) and mandibular body ostectomy was performed to correct the severe mandibular prognathism. A partial glossectomy was also carried out to address macroglossia. After a total treatment time of 32 months, a Class I occlusion with a favorable facial profile and lip competence were obtained. The occlusion was made approximately ideal, and mastication improved remarkably. Three years after retention, the occlusion was stable and no relapse was observed. The patient’s complaints and orthodontic problems were completely resolved. Therefore, a combination of two-jaw surgeries with Le Fort I maxillary osteotomy, mandibular SSRO, mandibular ostectomy, and glossectomy may be a viable option in the correction of extremely severe anteroposterior skeletal discrepancy

    Special Issue New Insights Into Microaneurysms in the Deep Capillary Plexus Detected by Optical Coherence Tomography Angiography in Diabetic Macular Edema

    Get PDF
    PURPOSE. To study the association between the distributions of microaneurysms detected by en face optical coherence tomography angiography (OCTA) and diabetic macular edema (DME). METHODS. The study design was a retrospective chart review of 27 patients (33 eyes) with DME. The eyes were scanned using OCTA (6 3 6 mm) and spectral-domain (SD) OCT macular cube. Each of the images of the capillary plexus was overlaid onto the image of the topographic map, and the densities of the microaneurysms were measured by ImageJ software. The association between the distribution of microaneurysms and macular edema was evaluated. RESULTS. For microaneurysms in areas with and without edema, 77.3 6 8.1% of these microaneurysms were located in the deep capillary plexuses (DCP). However, in areas of edema where the retinal thickness was more than 400 lm, 91.3 6 9.1% of the microaneurysms were found in the DCP. This difference was statistically significant (P < 0.001). In the macular edema area, there was a significantly higher density of microaneurysms in the DCP compared to the superficial capillary plexuses (1.71/mm 2 vs. 0.17/mm 2 , P < 0.001). There was also a significant correlation between the macular volume and the density of microaneurysms in the DCP in edema (r ¼ 0.63, P < 0.001). CONCLUSIONS. Our study demonstrated a high proportion of microaneurysms in the DCP, as well as a novel association between the distributions of microaneurysms detected by OCTA and DME. Results also indicated that microaneurysms located in the DCP contribute to the pathogenesis of DME

    Hydrodynamic-Pressure-Induced Elastic Deformation of Thrust Slide-Bearings in Scroll Compressors and Oil Film Pressure Increase Due to Oil Envelopment

    Get PDF
    This paper presents the concept of the Elasto-Hydrodynamic Lubrication?EHL?of thrust slide-bearings in scroll compressors, resulting in the superior lubrication characteristics of these bearings. The thrust plate undergoes elastic deformation due to axial loading, resulting in the formation of a uniform fluid wedge between the orbiting and fixed thrust plates. This wedge region has very high induced oil film pressure, which explains the remarkably good lubrication characteristics of the thrust slide-bearing. Furthermore, the high oil film pressure induces further local elastic deformation of the thrust plate, forming an EHL oil pocket with the thrust plate and a further increase in the oil film pressure between the sliding surfaces due to this oil envelopment. The formation of the EHL pocket was confirmed using FEM analysis and lubrication tests on the elastic deformation of the thrust plate. Subsequently, the additional increase in oil film pressure, due to the EHL pocket effect, was examined in computer simulations applying the average Reynolds equation for the boundary of elastic deformation of the thrust plate. In these studies, a 6.7% increase in oil film pressure was ascertained for a small cooling capacity scroll compressor driven at 3600 rpm with 0.1 kW motor. The oil envelopment contributes to the superior lubrication performance of the thrust slide bearings scroll compressors

    Optimization of EHL Lubrication Performance in Thrust Slide-Bearings of Scroll Compressors

    Get PDF
    Previous studies [Refs. 1, 2] revealed the formation of a uniform oil wedge at the periphery of the thrust plate, caused by the elastic deformation of the orbiting thrust plate due to the pressure difference across the orbiting thrust plate, is a significant factor in the high lubrication performance in thrust slide-bearings. In addition to the uniform wedge formation, the high oil film pressure also induces a local elastic deformation of the fixed thrust plate normal to its surface. The normal thrust plate deformation and the oil wedge effectively form an elasto-hydrodynamic-lubrication (EHL) pocket, even more effectively increasing the oil film pressure between the sliding surfaces, due to the envelopment of the oil, as confirmed in our companion paper [3], and an earlier, less-detailed contribution [4]. The present study focuses on aspects of EHL that have both positive and negative effects on the lubrication performance of the thrust slide-bearings in scroll compressors. Theoretical calculations using the average Reynolds equation and Patier-Chen solid contact theory, for the boundary of the local elastic deformation of the thrust slide-bearing, were conducted for a small cooling capacity scroll compressor driven at 3600 rpm with 0.1 kW. An approximate method was developed using characteristic curves to determine the oil film axial force, the average oil film thickness, the frictional force and the frictional coefficient. The calculations considered a variety of pressure differences due to the operation pressure and the thickness of thrust plate. Also cases with a fixed uniform wedge angle at the periphery were calculated. The calculated results suggest a possible maximum reduction in frictional coefficient of about 55% compared to that with a fixed uniform wedge angle. The reduction rate increases with decreasing thrust plate thickness, which, however, restricts the operation pressures to a lower pressure range. Design guidelines for optimizing EHL will be suggested. References: [1] Oku, T., Ishii, N., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Hiwata, A. : Theoretical Model of Lubrication Mechanism in the Thrust Slide-Bearing of Scroll Compressors, HVAC&R Research Journal ASHRAE Vol.14, No.2, pp.239-358, 2008-3. [2] Ishii, N., Oku, T., Anami, K., Knisely, C.W., Sawai, K., Morimoto, T., Iida, N. : Experimental Study of the Lubrication Mechanism for Thrust Slide Bearings in Scroll Compressors, HVAC&R Research Journal ASHRAE Vol.14, No.2, 2008-4. [3] Ishii, N., Tsuji, T., Anami, K., Nokiyama, K., Morimoto, T., Sakuda, A., Oku, T., Sawai, K., Knisely, C.W., : “Hydrodynamic-Pressure-Induced Elastic Deformation of Thrust Slide-Bearings in Scroll Compressors and Oil Film Pressure Increase Due to Oil Envelopment,” abstract submitted to 2014 Purdue Herrick Conferences. [4] Ishii, N., Tsuji, T., Oku, T., Anami, K., Knisely, C.W., Nokiyama, K., Morimoto, T., Sakuda, A., Sawai, K. 2012 “Elasto-Hydrodynamic Lubrication Effect in Thrust-Slide Bearings of Scroll Compressors,” 2012 Purdue Conference Paper on (Paper 1438)
    corecore