521 research outputs found

    Interactive Restless Multi-armed Bandit Game and Swarm Intelligence Effect

    Full text link
    We obtain the conditions for the emergence of the swarm intelligence effect in an interactive game of restless multi-armed bandit (rMAB). A player competes with multiple agents. Each bandit has a payoff that changes with a probability pcp_{c} per round. The agents and player choose one of three options: (1) Exploit (a good bandit), (2) Innovate (asocial learning for a good bandit among nIn_{I} randomly chosen bandits), and (3) Observe (social learning for a good bandit). Each agent has two parameters (c,pobs)(c,p_{obs}) to specify the decision: (i) cc, the threshold value for Exploit, and (ii) pobsp_{obs}, the probability for Observe in learning. The parameters (c,pobs)(c,p_{obs}) are uniformly distributed. We determine the optimal strategies for the player using complete knowledge about the rMAB. We show whether or not social or asocial learning is more optimal in the (pc,nI)(p_{c},n_{I}) space and define the swarm intelligence effect. We conduct a laboratory experiment (67 subjects) and observe the swarm intelligence effect only if (pc,nI)(p_{c},n_{I}) are chosen so that social learning is far more optimal than asocial learning.Comment: 18 pages, 4 figure

    Technical Efficiency, Regulation, and Heterogeneity in Japanese Airports

    Get PDF
    In this paper, the random stochastic frontier model is used to estimate the technical efficiency of Japanese airports taking into regulation and heterogeneity in the variables. The airports are ranked according to their productivity for the period 1987 to 2005 and homogenous and heterogeneous variables in the cost function are disentangled. Policy implication is derived.Japan; airports; efficiency; random frontier models; policy implications

    Universal Scaling Bounds on a Quantum Heat Current

    Full text link
    We derive new bounds on a heat current flowing into a quantum LL-particle system coupled with a Markovian environment. By assuming that a system Hamiltonian and a system-environment interaction Hamiltonian are extensive in LL, we show that the absolute value of the heat current scales at most as Θ(L3)\Theta (L^3) in a limit of large LL. Also, we present an example that saturates this bound in terms of scaling: non-interacting particles globally coupled with a thermal bath. However, the construction of such system requires many-body interactions induced by the environment, which may be difficult to realize with the current technology. To consider more feasible cases, we focus on a class of system where any non-diagonal elements of the noise operator (derived from the system-environment interaction Hamiltonian) become zero in the system energy basis, if the energy difference is beyond a certain value ΔE\Delta E. Then, for ΔE=Θ(L0)\Delta E = \Theta (L^0), we derive another scaling bound Θ(L2)\Theta (L^2) on the absolute value of the heat current, and the so-called superradiance belongs to a class to saturate this bound. Our results are useful to evaluate the best achievable performance of quantum-enhanced thermodynamic devices, which contain far-reaching applications for such as quantum heat engines, quantum refrigerators and quantum batteries.Comment: 6+18 pages, 2+2 figure

    Anti-invasive activity of α-tocopherol against hepatoma cells in culture via protein kinase C inhibition

    Get PDF
    Effects of α-, β-, γ- and δ-tocopherols on the proliferation and invasion of AH109A hepatoma cells and their modes of action were investigated. Four tocopherols inhibited the invasion as well as the proliferation of AH109A cells. Their inhibitory effects were more prominent on the invasion than on the proliferation. At 1 µM, α-tocopherol showed most potent anti-invasive activity without any influence on the proliferation. We have previously demonstrated that reactive oxygen species increase the invasion of AH109A cells. α-Tocopherol suppressed the reactive oxygen species-induced invasion but failed to suppress the reactive oxygen species-induced rises in intracellular peroxide level. GF 109203X, a protein kinase C inhibitor, decreased the invasive activity of AH109A cells. In contrast, phorbol-12-myristate-13-acetate, a protein kinase C activator, increased the invasive capacity of AH109A cells. α-Tocopherol suppressed the phorbol-12-myristate-13-acetate-induced increase in the invasion, and canceled the phorbol-12-myristate-13-acetate-induced rises in protein kinase C activity and phosphorylation of extracellular signal-regulated kinase. These results suggest that tocopherols, especially α-tocopherol, possess inhibitory effect more strongly on the invasion of AH109A cells than on the proliferation. They also suggest that the anti-invasive activity of α-tocopherol is raised through suppression of PKC/ERK signaling
    corecore