159,241 research outputs found

    Unfreezing Casimir invariants: singular perturbations giving rise to forbidden instabilities

    Full text link
    The infinite-dimensional mechanics of fluids and plasmas can be formulated as "noncanonical" Hamiltonian systems on a phase space of Eulerian variables. Singularities of the Poisson bracket operator produce singular Casimir elements that foliate the phase space, imposing topological constraints on the dynamics. Here we proffer a physical interpretation of Casimir elements as \emph{adiabatic invariants} ---upon coarse graining microscopic angle variables, we obtain a macroscopic hierarchy on which the separated action variables become adiabatic invariants. On reflection, a Casimir element may be \emph{unfrozen} by recovering a corresponding angle variable; such an increase in the number of degrees of freedom is, then, formulated as a \emph{singular perturbation}. As an example, we propose a canonization of the resonant-singularity of the Poisson bracket operator of the linearized magnetohydrodynamics equations, by which the ideal obstacle (resonant Casimir element) constraining the dynamics is unfrozen, giving rise to a tearing-mode instability

    General Rule and Materials Design of Negative Effective U System for High-T_c Superconductivity

    Full text link
    Based on the microscopic mechanisms of (1) charge-excitation-induced negative effective U in s^1 or d^9 electronic configurations, and (2) exchange-correlation-induced negative effective U in d^4 or d^6 electronic configurations, we propose a general rule and materials design of negative effective U system in itinerant (ionic and metallic) system for the realization of high-T_c superconductors. We design a T_c-enhancing layer (or clusters) of charge-excitation-induced negative effective UU connecting the superconducting layers for the realistic systems.Comment: 11 pages, 1 figures, 2 tables, APEX in printin

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1k→0,1P:{0,1}^{k} \to {0,1} except \equ where k≥3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (∣P−1(0)∣/2k−ϵ)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ω(n1/2+δ)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and δ>0\delta>0 is a constant that depends on PP and ϵ\epsilon. This breaks a natural lower bound Ω(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ω(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that P−1(1)⊆Q−1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ω(n1/2+δ)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between ϵ\epsilon-close to and (1/2−ϵ)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (1−2k/2k−ϵ)(1-2k/2^k-\epsilon)-far from satisfiability requires Ω(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of ϵn\epsilon n requires Ω(n)\Omega(n) queries. Previously, only super-constant lower bounds were known

    Testing List H-Homomorphisms

    Full text link
    Let HH be an undirected graph. In the List HH-Homomorphism Problem, given an undirected graph GG with a list constraint L(v)⊆V(H)L(v) \subseteq V(H) for each variable v∈V(G)v \in V(G), the objective is to find a list HH-homomorphism f:V(G)→V(H)f:V(G) \to V(H), that is, f(v)∈L(v)f(v) \in L(v) for every v∈V(G)v \in V(G) and (f(u),f(v))∈E(H)(f(u),f(v)) \in E(H) whenever (u,v)∈E(G)(u,v) \in E(G). We consider the following problem: given a map f:V(G)→V(H)f:V(G) \to V(H) as an oracle access, the objective is to decide with high probability whether ff is a list HH-homomorphism or \textit{far} from any list HH-homomorphisms. The efficiency of an algorithm is measured by the number of accesses to ff. In this paper, we classify graphs HH with respect to the query complexity for testing list HH-homomorphisms and show the following trichotomy holds: (i) List HH-homomorphisms are testable with a constant number of queries if and only if HH is a reflexive complete graph or an irreflexive complete bipartite graph. (ii) List HH-homomorphisms are testable with a sublinear number of queries if and only if HH is a bi-arc graph. (iii) Testing list HH-homomorphisms requires a linear number of queries if HH is not a bi-arc graph
    • …
    corecore