1,188 research outputs found

    High-Velocity Molecular Gas in the Galactic Center Radio Lobe

    Get PDF
    We point out a possible association of high-velocity molecular gas with the Galactic Center Radio Lobe (GCL). A molecular spur in the eastern GCL ridge is receding at \Vlsr \sim +100 \kms, and the western spur approaching at \Vlsr \sim -150 \kms, suggesting a high-velocity rotation of the GCL. We study the kinematics of the GCL based on these molecular line data.Comment: To appear in ApJ. Letters, Plain TeX, Figures on reques

    Orbital Decay and Tidal Disruption of a Star Cluster: Analytical Calculation

    Get PDF
    The orbital decay and tidal disruption of a star cluster in a galaxy is studied in an analytical manner. Owing to dynamical friction, the star cluster spirals in toward the center of the galaxy. Simultaneously, the galactic tidal field strips stars from the outskirts of the star cluster. Under an assumption that the star cluster undergoes a self-similar evolution, we obtain the condition and timescale for the star cluster to reach the galaxy center before its disruption. The result is used to discuss the fate of so-called intermediate-mass black holes with >10^3 M(sun) found recently in young star clusters of starburst galaxies and also the mass function of globular clusters in galaxies.Comment: 12 pages, 1 PS file for 2 figures, to appear in The Astrophysical Journa

    Noncommutative Deformation of Spinor Zero Mode and ADHM Construction

    Full text link
    A method to construct noncommutative instantons as deformations from commutative instantons was provided in arXiv:0805.3373. Using this noncommutative deformed instanton, we investigate the spinor zero modes of the Dirac operator in a noncommutative instanton background on noncommutative R^4, and we modify the index of the Dirac operator on the noncommutative space slightly and show that the number of the zero mode of the Dirac operator is preserved under the noncommutative deformation. We prove the existence of the Green's function associated with instantons on noncommutative R^4, as a smooth deformation of the commutative case. The feature of the zero modes of the Dirac operator and the Green's function derives noncommutative ADHM equations which coincide with the ones introduced by Nekrasov and Schwarz. We show a one-to-one correspondence between the instantons on noncommutative R^4 and ADHM data. An example of a noncommutative instanton and a spinor zero mode are also given.Comment: 34 pages, no figures, v3: an appendix and some definitions added,typos correcte

    Runaway Merging of Black Holes: Analytical Constraint on the Timescale

    Get PDF
    Following the discovery of a black hole (BH) with a mass of 10^3-10^6 M(sun) in a starburst galaxy M82, we study formation of such a BH via successive merging of stellar-mass BHs within a star cluster. The merging has a runaway characteristic. This is because massive BHs sink into the cluster core and have a high number density, and because the merging probability is higher for more massive BHs. We use the Smoluchowski equation to study analytically the evolution of the BH mass distribution. Under favorable conditions, which are expected for some star clusters in starburst galaxies, the timescale of the runaway merging is at most of order 10^7 yr. This is short enough to account for the presence of a BH heavier than 10^3 M(sun) in an ongoing starburst region.Comment: 10 pages, no figures, to appear in The Astrophysical Journal (Letters

    Iteration Method to Derive Exact Rotation Curves from Position-Velocity Diagrams of Spiral Galaxies

    Get PDF
    We present an iteration method to derive exact rotation curves (RC) of spiral galaxies from observed position-velocity diagrams (PVD), which comprises the following procedure. An initial rotation curve, RC0, is adopted from an observed PV diagram (PV0), obtained by any simple method such as the peak-intensity method. Using this rotation curve and an observed radial distribution of intensity (emissivity), we construct a simulated PV diagram (PV1). The difference between a rotation curve obtained from this PV1 and the original RC (e.g., difference between peak-intensity velocities) is used to correct the initial RC to obtain a corrected rotation curve, RC1. This RC1 is used to calculated another PVD (PV2) using the observed intensity distribution, and to obtain the second iterated RC (RC2). This iteration is repeated until PVii converges to PV0, so that the differences between PVii and PV0 becomes minimum. Finally RCii is adopted as the most reliable rotation curve. We apply this method to some observed PVDs of nearby galaxies, and show that the iteration successfully converges to give reliable rotation curves. We show that the method is powerful to detect central massive objects.Comment: To appear in ApJ.Letters, 5 pages Latex with 4 figure

    Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy

    Full text link
    The electronic state around a single vacancy in silicon crystal is investigated by using the Green's function approach. The triply degenerate charge states are found to be widely extended and account for extremely large elastic softening at low temperature as observed in recent ultrasonic experiments. When we include the LS coupling λSi\lambda_{\rm Si} on each Si atom, the 6-fold spin-orbital degeneracy for the V+V^{+} state with the valence +1 and spin 1/2 splits into Γ7\Gamma_{7} doublet groundstates and Γ8\Gamma_{8} quartet excited states with a reduced excited energy of O(λSi/10)O(\lambda_{\rm Si}/10). We also consider the effect of couplings between electrons and Jahn-Teller phonons in the dangling bonds within the second order perturbation and find that the groundstate becomes Γ8\Gamma_{8} quartet which is responsible for the magnetic-field suppression of the softening in B-doped silicon.Comment: 4 pages, 2 figure

    Scalability of spin FPGA: A Reconfigurable Architecture based on spin MOSFET

    Full text link
    Scalability of Field Programmable Gate Array (FPGA) using spin MOSFET (spin FPGA) with magnetocurrent (MC) ratio in the range of 100% to 1000% is discussed for the first time. Area and speed of million-gate spin FPGA are numerically benchmarked with CMOS FPGA for 22nm, 32nm and 45nm technologies including 20% transistor size variation. We show that area is reduced and speed is increased in spin FPGA owing to the nonvolatile memory function of spin MOSFET.Comment: 3 pages, 7 figure

    VLBI study of water maser emission in the Seyfert 2 galaxy NGC5793. I: Imaging blueshifted emission and the parsec-scale jet

    Get PDF
    We present the first result of VLBI observations of the blueshifted water maser emission from the type 2 Seyfert galaxy NGC5793, which we combine with new and previous VLBI observations of continuum emission at 1.7, 5.0, 8.4, 15, and 22 GHz. Maser emission was detected earlier in single-dish observations and found to have both red- and blueshifted features relative to the systemic velocity. We could image only the blueshifted emission, which is located 3.6 pc southwest of the 22 GHz continuum peak. The blueshifted emission was found to originate in two clusters that are separated by 0.7 milliarcsecond (0.16 pc). No compact continuum emission was found within 3.6 pc of the maser spot. A compact continuum source showing a marginally inverted spectrum between 1.7 and 5.0 GHz was found 4.2 pc southwest of the maser position. The spectral turnover might be due to synchrotron self-absorption caused by a shock in the jet owing to collision with dense gas, or it might be due to free-free absorption in an ionized screen possibly the inner part of a disk, foreground to the jet. The water maser may be part of a maser disk. If so, it would be rotating in the opposite sense to the highly inclined galactic disk observed in CO emission. We estimate a binding mass within 1 pc of the presumed nucleus to be on the order of 10^7 Msun. Alternatively, the maser emission could result from the amplification of a radio jet by foreground circumnuclear molecular gas. In this case, the high blueshift of the maser emission might mean that the masing region is moving outward away from the molecular gas surrounding an active nucleus.Comment: 20 pages, 6 figures, to appear in ApJ, Oct. 200

    Effect of exchange interaction on fidelity of quantum state transfer from a photon qubit to an electron-spin qubit

    Get PDF
    We analyzed the fidelity of the quantum state transfer (QST) from a photon-polarization qubit to an electron-spin-polarization qubit in a semiconductor quantum dot, with special attention to the exchange interaction between the electron and the simultaneously created hole. In order to realize a high-fidelity QST we had to separate the electron and hole as soon as possible, since the electron-hole exchange interaction modifies the orientation of the electron spin. Thus, we propose a double-dot structure to separate the electron and hole quickly, and show that the fidelity of the QST can reach as high as 0.996 if the resonant tunneling condition is satisfied.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B Rapid Communication
    • …
    corecore