24 research outputs found
AN INVESTIGATION OF CIRRUS CLOUD PROPERTIES USING AIRBORNE LIDAR
The impact of cirrus clouds on the Earth's radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and located in the cold upper troposphere, cirrus clouds can cause large warming effects because they are relatively transmissive to short-wave solar radiation, but absorptive of long wave radiation. Our ability to model radiative effects of cirrus clouds is inhibited by uncertainties in cloud optical properties. Studies of mid-latitude cirrus properties have revealed notable differences compared to tropical anvil cirrus, likely a consequence of varying dynamic formation mechanisms. Cloud-aerosol lidars provide critical information about the vertical structure of cirrus for climate studies. For this dissertation, I helped develop the Airborne Cloud-Aerosol Transport System (ACATS), a Doppler wind lidar system at NASA Goddard Space Flight Center (GSFC). ACATS is also a high spectral resolution lidar (HSRL), uniquely capable of directly resolving backscatter and extinction properties of a particle from high-altitude aircraft. The first ACATS science flights were conducted out of Wallops Island, VA in September of 2012 and included coincident measurements with the Cloud Physics Lidar (CPL) instrument.
In this dissertation, I provide an overview of the ACATS method and instrument design, describe the ACATS retrieval algorithms for cloud and aerosol properties, explain the ACATS HSRL retrieval errors due to the instrument calibration, and use the coincident CPL data to validate and evaluate ACATS cloud and aerosol retrievals. Both the ACATS HSRL and standard backscatter retrievals agree well with coincident CPL retrievals. Mean ACATS and CPL extinction profiles for three case studies demonstrate similar structure and agree to within 25 percent for cirrus clouds. The new HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions. Furthermore, extinction and particle wind velocity retrieved from ACATS can be used for science applications such as dust transport and convective anvil outflow.
The relationship between cirrus cloud properties and dynamic formation mechanism is examined through statistics of CPL cirrus observations from more than 100 aircraft flights. The CPL 532 nm lidar ratios (also referred to as the extinction to backscatter ratio) for cirrus clouds formed by synoptic-scale uplift over land are lower than convectively-generated cirrus over tropical oceans. Errors in assuming a constant lidar ratio can lead to errors of ~50% in cloud optical extinction derived from space-borne lidar such as CALIOP. The 1064 nm depolarization ratios for synoptically-generated cirrus over land are lower than convectively-generated cirrus, formed due to rapid upward motions of tropical convection, as a consequence of differences in cloud temperatures and ice particle size and shape. Finally, the backscatter color ratio is directly proportional to depolarization ratio for synoptically-generated cirrus, but not for any other type of cirrus. The relationships between cirrus properties and formation mechanisms determined in this study can be used as part of a larger global climatology of cirrus clouds to improve parameterizations in global climate models and satellite retrievals to improve our understanding of the impact of clouds on weather and climate
Investigation of CATS Aerosol Products and Application Toward Global Diurnal Variation of Aerosols
We present a comparison of 1064 nm aerosol optical depth (AOD) and aerosol extinction profiles from the Cloud-Aerosol Transport System (CATS) level 2 aerosol product with collocated Aerosol Robotic Network (AERONET) AOD, Moderate Imaging Spectroradiometer (MODIS) Aqua and Terra Dark Target AOD and CloudAerosol Lidar with Orthogonal Polarization (CALIOP) AOD and extinction data for the period of March 2015– October 2017. Upon quality-assurance checks of CATS data, reasonable agreement is found between aerosol data from CATS and other sensors. Using quality-assured CATS aerosol data, for the first time, variations in AODs and aerosol extinction profiles are evaluated at 00:00, 06:00, 12:00 and 18:00 UTC (and/or 00:00, 06:00, 12:00 and 18:00 local time or LT) on both regional and global scales. This study suggests that marginal variations are found in AOD from a global mean perspective, with the minimum aerosol extinction values found at 18:00 LT near the surface layer for global oceans, for both the June–November and December– May seasons. Over land, below 500 m, the daily minimum and maximum aerosol extinction values are found at 12:00 and 00:00/06:00 LT, respectively. Strong diurnal variations are also found over north Africa, the Middle East and India for the December–May season, and over north Africa, south Africa, the Middle East and India for the June–November season
Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data
Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system
The Airborne Cloud-Aerosol Transport System
The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds
Seasonally Transported Aerosol Layers Over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported
From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region
The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data
The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters
Recommended from our members
Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation
The Cloud-Aerosol Transport System (CATS) lidar on board the International Space Station (ISS) operated from 10 February 2015 to 30 October 2017 providing range-resolved vertical backscatter profiles of Earth's atmosphere at 1064 and 532 nm. The CATS instrument design and ISS orbit lead to a higher 1064 nm signal-to-noise ratio than previous space-based lidars, allowing for direct atmospheric calibration of the 1064 nm signals. Nighttime CATS version 3-00 data were calibrated by scaling the measured data to a model of the expected atmospheric backscatter between 22 and 26 km a.m.s.l. (above mean sea level). The CATS atmospheric model is constructed using molecular backscatter profiles derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data and aerosol scattering ratios measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The nighttime normalization altitude region was chosen to simultaneously minimize aerosol loading and variability within the CATS data frame, which extends from 28 to −2 km a.m.s.l. Daytime CATS version 3-00 data were calibrated through comparisons with nighttime measurements of the layer-integrated attenuated total backscatter (iATB) from strongly scattering, rapidly attenuating opaque cirrus clouds.
The CATS nighttime 1064 nm attenuated total backscatter (ATB) uncertainties for clouds and aerosols are primarily related to the uncertainties in the CATS nighttime calibration technique, which are estimated to be ∼9  %. Median CATS V3-00 1064 nm ATB relative uncertainty at night within cloud and aerosol layers is 7 %, slightly lower than these calibration uncertainty estimates. CATS median daytime 1064 nm ATB relative uncertainty is 21 % in cloud and aerosol layers, similar to the estimated 16 %–18 % uncertainty in the CATS daytime cirrus cloud calibration transfer technique. Coincident daytime comparisons between CATS and the Cloud Physics Lidar (CPL) during the CATS-CALIPSO Airborne Validation Experiment (CCAVE) project show good agreement in mean ATB profiles for clear-air regions. Eight nighttime comparisons between CATS and the PollyXT ground-based lidars also show good agreement in clear-air regions between 3 and 12 km, with CATS having a mean ATB of 19.7 % lower than PollyXT. Agreement between the two instruments (∼7 %) is even better within an aerosol layer. Six-month comparisons of nighttime ATB values between CATS and CALIOP also show that iATB comparisons of opaque cirrus clouds agree to within 19 %. Overall, CATS has demonstrated that direct calibration of the 1064 nm channel is possible from a space-based lidar using the atmospheric normalization technique
Convective and Wave Signatures in Ozone Profiles Over the Equatorial Americas: Views from TC4 (2007) and SHADOZ
During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer