454 research outputs found
VLA observations of candidate high-mass protostellar objects at 7 mm
We present radio continuum observations at 7 mm made using the Very Large
Array towards three massive star forming regions thought to be in very early
stages of evolution selected from the sample of Sridharan et al. (2002).
Emission was detected towards all three sources (IRAS 18470-0044, IRAS
19217+1651 and IRAS 23151+5912). We find that in all cases the 7 mm emission
corresponds to thermal emission from ionized gas. The regions of ionized gas
associated with IRAS 19217+1651 and IRAS 23151+5912 are hypercompact with
diameters of 0.009 and 0.0006 pc, and emission measures of 7.0 x 10^8 and 2.3 x
10^9 pc cm^(-6), respectively.Comment: 17 pages, 5 figures, accepted by The Astronomical Journa
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
The Cone-Like H-alpha Nebula in NGC 4945: A Galactic Superwind Bow Shock ?
We find that a non-axisymmetric bow shock model, with an appropriate choice
of parameters, could fit the line splitting velocity field of the cone-like
H nebula in NGC 4945 better than a canonical cone model. Meanwhile, the
bow shock model could also reproduce the morphology of the H nebula.
The bow shock results from the interaction of the galactic superwinds with a
giant HII region. It is implied that the starburst ring or disk around the
galactic nucleus should be generating strong winds, and the bright H
knot northwest of the nucleus be suffering an anisotropic mass loss process.Comment: 14 pages, aasms4.sty, 3 figures not included (available upon request)
To appear in ApJ Letters. email chy, [email protected]
Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem
The transmission rate of many acute infectious diseases varies significantly in time, but the underlying mechanisms are usually uncertain. They may include seasonal changes in the environment, contact rate, immune system response, etc. The transmission rate has been thought difficult to measure directly. We present a new algorithm to compute the time-dependent transmission rate directly from prevalence data, which makes no assumptions about the number of susceptible or vital rates. The algorithm follows our complete and explicit solution of a mathematical inverse problem for SIR-type transmission models. We prove that almost any infection profile can be perfectly fitted by an SIR model with variable transmission rate. This clearly shows a serious danger of overfitting such transmission models. We illustrate the algorithm with historic UK measles data and our observations support the common belief that measles transmission was predominantly driven by school contacts
A Keck High Resolution Spectroscopic Study of the Orion Nebula Proplyds
We present the results of spectroscopy of four bright proplyds in the Orion
Nebula obtained at a velocity resolution of 6 km/s. After careful isolation of
the proplyd spectra from the confusing nebular radiation, the emission line
profiles are compared with those predicted by realistic dynamic/photoionization
models of the objects. The spectral line widths show a clear correlation with
ionization potential, which is consistent with the free expansion of a
transonic, ionization-stratified, photoevaporating flow. Fitting models of such
a flow simultaneously to our spectra and HST emission line imaging provides
direct measurements of the proplyd size, ionized density and outflow velocity.
These measurements confirm that the ionization front in the proplyds is
approximately D-critical and provide the most accurate and robust estimate to
date of the proplyd mass loss rate. Values of 0.7E-6 to 1.5E-6 Msun/year are
found for our spectroscopic sample, although extrapolating our results to a
larger sample of proplyds implies that 0.4E-6 Msun/year is more typical of the
proplyds as a whole. In view of the reported limits on the masses of the
circumstellar disks within the proplyds, the length of time that they can have
been exposed to ionizing radiation should not greatly exceed 10,000 years - a
factor of 30 less than the mean age of the proplyd stars. We review the various
mechanisms that have been proposed to explain this situation, and conclude that
none can plausibly work unless the disk masses are revised upwards by a
substantial amount.Comment: 23 pages, 8 figures, uses emulateapj.sty, accepted for publication in
The Astronomical Journal (scheduled November 1999
The HII Region KR 140: Spontaneous Formation of a High Mass Star
We have used a multiwavelength data set from the Canadian Galactic Plane
Survey (CGPS) to study the Galactic HII region KR 140, both on the scale of the
nebula itself and in the context of the star forming activity in the nearby
W3/W4/W5 complex of molecular clouds and HII regions. From both radio and
infrared data we have found a covering factor of about 0.5 for KR 140 and we
interpret the nebula as a bowl-shaped region viewed close to face on.
Extinction measurements place the region on the near side of its parent
molecular cloud. The nebula is kept ionized by one O8.5 V(e) star, VES 735,
which is less than a few million years old. CO data show that VES 735 has
disrupted much of the original molecular cloud for which the estimated mass and
density are about 5000 and 100 cm, respectively. KR 140 is
isolated from the nearest star forming activity, in W3. Our data suggest that
KR 140 is an example of spontaneous (i.e., non-triggered) formation of,
unusually, a high mass star.Comment: 46 pages; includes 15 figures; accepted by the Ap
Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers
Recent studies of methanol and ground-state OH masers at very high spectral
resolution have shed new light on small-scale maser processes. The nearby
source W3(OH), which contains numerous bright masers in several different
transitions, provides an excellent laboratory for high spectral resolution
techniques. We present a model of W3(OH) based on EVN observations of the
rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral
resolution. The 6.0 GHz masers are becoming brighter with time and show
evidence for tangential proper motions. We confirm the existence of a region of
magnetic field oriented toward the observer to the southeast and find another
such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz
masers trace the inner edge of a counterclockwise rotating torus feature.
Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but
trace the same material. Velocity gradients of nearby Zeeman components are
much more closely correlated than in the ground state, likely due to the
smaller spatial separation between Zeeman components. Hydroxyl maser peaks at
very long baseline interferometric resolution appear to have structure on
scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables,
accepted to Ap
HIFI spectroscopy of low-level water transitions in M82
We present observations of the rotational ortho-water ground transition, the
two lowest para-water transitions, and the ground transition of ionised
ortho-water in the archetypal starburst galaxy M82, performed with the HIFI
instrument on the Herschel Space Observatory. These observations are the first
detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000)
(1115\,GHz) lines in an extragalactic source. All three water lines show
different spectral line profiles, underlining the need for high spectral
resolution in interpreting line formation processes. Using the line shape of
the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction
with high spatial resolution CO observations, we show that the (ionised) water
absorption arises from a ~2000 pc^2 region within the HIFI beam located about
~50 pc east of the dynamical centre of the galaxy. This region does not
coincide with any of the known line emission peaks that have been identified in
other molecular tracers, with the exception of HCO. Our data suggest that water
and ionised water within this region have high (up to 75%) area-covering
factors of the underlying continuum. This indicates that water is not
associated with small, dense cores within the ISM of M82 but arises from a more
widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&
Massive Stars: Their Environment and Formation
Cloud environment is thought to play a critical role in determining the
mechanism of formation of massive stars. In this contribution we review the
physical characteristics of the environment around recently formed massive
stars. Particular emphasis is given to recent high angular resolution
observations which have improved our knowledge of the physical conditions and
kinematics of compact regions of ionized gas and of dense and hot molecular
cores associated with luminous O and B stars. We will show that this large body
of data, gathered during the last decade, has allowed significant progress in
the understanding of the physical processes that take place during the
formation and early evolution of massive stars.Comment: Pub. Astron. Soc. of Pacific (Invited Review), 95 pages (Latex), 5
pages (tables, Latex), 11 postscript or gif figure
Graduate students navigating social-ecological research: insights from the Long-Term Ecological Research Network
Interdisciplinary, collaborative research capable of capturing the feedbacks between biophysical and social systems can improve the capacity for sustainable environmental decision making. Networks of researchers provide unique opportunities to foster social-ecological inquiry. Although insights into interdisciplinary research have been discussed elsewhere, they rarely address the role of networks and often come from the perspectives of more senior scientists. We have provided graduate student perspectives on interdisciplinary degree paths from within the Long-Term Ecological Research (LTER) Network. Focusing on data from a survey of graduate students in the LTER Network and four self-identified successful graduate student research experiences, we examined the importance of funding, pedagogy, research design and development, communication, networking, and culture and attitude to students pursuing social-ecological research. Through sharing insights from successful graduate student approaches to social-ecological research within the LTER Network, we hope to facilitate dialogue between students, faculty, and networks to improve training for interdisciplinary scientists
- …