265 research outputs found

    Large Surveys in Cosmology: The Changing Sociology

    Get PDF
    Galaxy redshift surveys and Cosmic Microwave Background experiments are undertaken with larger and larger teams, in a fashion reminiscent of particle physics experiments and the human genome projects. We discuss the role of young researchers, the issue of multiple authorship, and ways to communicate effectively in teams of tens to hundreds of collaborators.Comment: Invited article for "Organizations and Strategies in Astronomy II", ed. A. Heck, Kluwer Acad. Publ., in press (7 pages, no figures

    Does environment affect the star formation histories of early-type galaxies?

    Full text link
    Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: close pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.Comment: 5 pages, 2 figures. Proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    And the winner is: galaxy mass

    Full text link
    The environment is known to affect the formation and evolution of galaxies considerably best visible through the well-known morphology-density relationship. We study the effect of environment on the evolution of early-type galaxies for a sample of 3,360 galaxies morphologically selected by visual inspection from the SDSS in the redshift range 0.05<z<0.06, and analyse luminosity-weighted age, metallicity, and alpha/Fe ratio as function of environment and galaxy mass. We find that on average 10 per cent of early-type galaxies are rejuvenated through minor recent star formation. This fraction increases with both decreasing galaxy mass and decreasing environmental density. However, the bulk of the population obeys a well-defined scaling of age, metallicity, and alpha/Fe ratio with galaxy mass that is independent of environment. Our results contribute to the growing evidence in the recent literature that galaxy mass is the major driver of galaxy formation. Even the morphology-density relationship may actually be mass-driven, as the consequence of an environment dependent characteristic galaxy mass coupled with the fact that late-type galaxy morphologies are more prevalent in low-mass galaxies.Comment: 5 pages, proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    Broad Brush Cosmos

    Full text link
    An innovative approach to map the large-scale structure in the Universe sidesteps the conventional need to observe millions of galaxies individually, and holds promise for both astrophysical and cosmological studies.Comment: Invited Nature 'News and Views' Commentary on Chang et al. 2010, Nature, 466, 463; 6pages, 1 figur

    Detection of Massive Forming Galaxies at Redshifts Greater than One

    Get PDF
    The complex problem of when and how galaxies formed has not until recently been susceptible of direct attack. It has been known for some time that the excessive number of blue galaxies counted at faint magnitudes implies that a considerable fraction of the massive star formation in the universe occurred at z < 3, but, surprisingly, spectroscopic studies of galaxies down to a B magnitude of 24 found little sign of the expected high-z progenitors of current massive galaxies, but rather, in large part, small blue galaxies at modest redshifts z \sim 0.3. This unexpected population has diverted attention from the possibility that early massive star-forming galaxies might also be found in the faint blue excess. From KECK spectroscopic observations deep enough to encompass a large population of z > 1 field galaxies, we can now show directly that in fact these forming galaxies are present in substantial numbers at B \sim 24, and that the era from redshifts 1 to 2 was clearly a major period of galaxy formation. These z > 1 galaxies have very unusual morphologies as seen in deep HST WFPC2 images.Comment: 10 pages LaTeX + 5 PostScript figures in uuencoded gzipped tar file; aasms4.sty, flushrt.sty, overcite.sty (the two aastex4.0 and overcite.sty macros are available from xxx.lanl.gov) Also available (along with style files) via anonymous ftp to ftp://hubble.ifa.hawaii.edu/pub/preprints . E-print version of paper adds citation cross-references to other archived e-prints, where available. To appear in Nature October 19, 199

    Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop

    Get PDF
    Using automated processes to detect wildlife in uncontrolled outdoor imagery in the field of wildlife ecology is a challenging task. This is especially true in imagery provided by an Unmanned Aerial System (UAS), where the relative size of wildlife is small and visually similar to its background. This work presents an automated feedback loop which can be used to train convolutional neural networks with extremely unbalanced class sizes, which alleviates some of these challenges. This work utilizes UAS imagery collected by the Wildlife@Home project, which has employed citizen scientists and trained experts to go through collected UAS imagery and classify it. Classified data is used as inputs to convolutional neural networks (CNNs) which seek to automatically mark which areas of the imagery contain wildlife. The output of the CNN is then passed to a blob counter which returns a population estimate for the image. The feedback loop was developed to help train the CNNs to better differentiate between the wildlife and the visually similar background and deal with the disparate amount of wildlife training images versus background training images. Utilizing the feedback loop dramatically reduced population count error rates from previously published work, from +150% to −3.93% on citizen scientist data and +88% to +5.24% on expert data

    Two Stellar Components in the Halo of the Milky Way

    Full text link
    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first is for the main paper, the second for supplementary information. The version is consistent with the version published in Natur

    Overfeeding, Autonomic Regulation and Metabolic Consequences

    Get PDF
    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio
    corecore