26 research outputs found

    In-Use Stability of SB12 (Eculizumab, Soliris Biosimilar) Diluted in Saline and Dextrose Infusion Solution after an Extended Storage Period

    No full text
    Abstract Introduction SB12 is a biosimilar to eculizumab reference product [SolirisTM (Soliris is a trademark of Alexion Pharmaceuticals, Inc.)] that acts as a C5 complement protein inhibitor. The infusion stability of in-use (diluted) SB12 outside the conditions stated in the reference product’s label is unknown. Objective The objective of this study was to assess the stability of SB12 after extended storage in conditions not claimed in the originator label. Methods Infusion stability was assessed in SB12 samples (diluted in 0.9% NaCl, 0.45% NaCl, and 5% dextrose, final concentration of 5 mg/mL per clinical trial protocol and the reference product’s label) kept at 5 ± 3 °C for up to 3 months, then 30 ± 2 °C/65 ± 5% relative humidity (RH) for 72 h. The product was stored in different containers [polyolefin (PO) bags, glass bottles and syringes], and the protocol followed International Conference on Harmonisation (ICH) and European Medicines Agency (EMA) requirements for stability evaluation of biological products. Stability was evaluated using complementary assays, including pH, protein concentration (A280), purity (size exclusion-high-performance liquid chromatography, capillary electrophoresis-sodium dodecyl sulfate, and imaged capillary isoelectric focusing), biological activity (C5 binding and inhibition), and safety (subvisible particles). Results Except for charge variants in SB12 diluted in 5% dextrose, all results met the stability acceptance criteria. There were no major changes in terms of physicochemical stability, biological activity, and subvisible particles. Conclusions The infusion stability of SB12 after extended storage (5 ± 3 °C for up to 3 months, then 30 ± 2 °C/65 ± 5% RH for 72 h) was demonstrated for longer periods and at higher temperatures than what is stated in the EU and US labels of the reference product. The physicochemical properties, biological activity, and subvisible particles of in-use SB12 diluted in 0.9% NaCl and 0.45% NaCl were maintained under the described conditions and for all tested containers. However, instability was observed for the diluted SB12 in 5% dextrose. These results may reduce the workload of clinical staff and minimize drug waste from treatment delays without any loss in product quality and biological activity

    Endothelium-Dependent Vasorelaxant Effects of Dealcoholized Wine Powder of Wild Grape (Vitis coignetiae) in the Rat Thoracic Aorta

    No full text
    The vasorelaxant effects of dealcoholized wild grape (Vitis coignetiae) wine were investigated with isolated rat thoracic aorta. In our present study, we demonstrate that wild grape wine powder (WGWP) induced relaxation of aortic rings preconstricted with norepinephrine in a dose-dependent manner (at concentrations ranging from 0.1 to 1 mg/mL). The vasorelaxant effect of WGWP was dependent on intact endothelia, which was attenuated by incubation with inhibitors of endothelium-derived relaxing factors, such as N G -nitro-L-arginine (nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), and indomethacin (cyclooxygenase inhibitor). Moreover, treatment with WGWP and atropine (muscarinic receptor antagonist) or diphenylhydramine (histamine receptor antagonist) significantly inhibited endothelium-dependent vasorelaxation. Our results suggest that WGWP induces relaxation in rat aortic rings in an endothelium-dependent manner. Results further indicate that this effect occurs via nitric oxide-cGMP pathway and prostacyclin-cAMP pathway through a muscarinic receptor and histamine receptor

    EUCOMMIA ULMOIDES OLIV. EXTRACT REGULATES AGE-INDUCED INJURY IN TUBULAR ENDOTHELIAL CELLS VIA THE RAGE-NRF2 PATHWAY

    No full text
    The leaves, stems, and bark of Eucommia ulmoides Oliv. (EU), also known as Du-Zhong, have traditionally been used to cure various diseases, such as liver, kidney, and muscle diseases, in Asia. Despite evidence for protective effects against renal complications, its precise effects and mechanisms of action are unclear. In this study, the effects of EU on advanced glycation end products (AGEs)-induced renal disease and its mechanism were examined. NRK 52E normal rat kidney tubular epithelial cells were treated with AGEs and an EU extract. Expression levels of TGF-β1, an indicator of renal cell damage, and catalase, an antioxidant marker, were examined. Nuclear factor-E2-related factor 2 (Nrf2), kelch-like ECH-associated protein 1 (keap1), and p65 regulation were examined to identify additional antioxidant mechanisms related to renal cell apoptosis and AGEs-induced renal cell damage. The effects of EU on mitogen-activated protein kinase (MAPK), Akt, and phosphoinositide 3-kinase (PI3K), which are involved in apoptosis, were also examined. TGF-β1 expression increased in response to AGEs and decreased by additional treatment with EU. Additionally, EU increased the expression of catalase. We found that EU increased Nrf2, keap1, and p65 and regulated the expression of RAGE (receptor for AGEs) and its downstream target Sirt1. EU also regulated the AGEs-altered phosphorylation of apoptosis factors. Based on these findings, we concluded that EU regulates AGEs-induced renal cell damage via antioxidant and apoptosis-related mechanisms

    Eucommia ulmoides Ameliorates Glucotoxicity by Suppressing Advanced Glycation End-Products in Diabetic Mice Kidney

    No full text
    Eucommia ulmoides Oliv. (EU), also known as Du-Zhong, is a medicinal herb commonly used in Asia to treat hypertension and diabetes. Despite evidence of the protective effects of EU against diabetes, its precise effects and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of EU on AGEs-induced renal disease and explored the possible underlying mechanisms using streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice received EU extract (200 mg/kg) orally for 6 weeks. EU treatment did not change blood glucose and glycated hemoglobin (HbA1c) levels in diabetic mice. However, the EU-treated group showed a significant increase in the protein expression and activity of glyoxalase 1 (Glo1), which detoxifies the AGE precursor, methylglyoxal (MGO). EU significantly upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression but downregulated that of receptor for AGE (RAGE). Furthermore, histological and immunohistochemical analyses of kidney tissue showed that EU reduced periodic acid–Schiff (PAS)-positive staining, AGEs, and MGO accumulation in diabetic mice. Based on these findings, we concluded that EU ameliorated the renal damage in diabetic mice by inhibiting AGEs formation and RAGE expression and reducing oxidative stress, through the Glo1 and Nrf2 pathways

    Endothelium-Dependent Vasorelaxant Effects of Dealcoholized Wine Powder of Wild Grape (Vitis coignetiae) in the Rat Thoracic Aorta

    No full text
    The vasorelaxant effects of dealcoholized wild grape (Vitis coignetiae) wine were investigated with isolated rat thoracic aorta. In our present study, we demonstrate that wild grape wine powder (WGWP) induced relaxation of aortic rings preconstricted with norepinephrine in a dose-dependent manner (at concentrations ranging from 0.1 to 1 mg/mL). The vasorelaxant effect of WGWP was dependent on intact endothelia, which was attenuated by incubation with inhibitors of endothelium-derived relaxing factors, such as NG-nitro-L-arginine (nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), and indomethacin (cyclooxygenase inhibitor). Moreover, treatment with WGWP and atropine (muscarinic receptor antagonist) or diphenylhydramine (histamine receptor antagonist) significantly inhibited endothelium-dependent vasorelaxation. Our results suggest that WGWP induces relaxation in rat aortic rings in an endothelium-dependent manner. Results further indicate that this effect occurs via nitric oxide-cGMP pathway and prostacyclin-cAMP pathway through a muscarinic receptor and histamine receptor

    High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change

    No full text
    High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD) or high-fructose (HFrD) diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity

    Thyme Extract Alleviates High-Fat Diet-Induced Obesity and Gut Dysfunction

    No full text
    Prolonged intake of a high-fat diet (HFD) disturbs the composition of gut microbiota, contributing to the development of metabolic diseases, notably obesity and increased intestinal permeability. Thyme (Thymus vulgaris L.), an aromatic plant, is known for its several therapeutic properties. In this study, we explored the potential of thyme extract (TLE) to mitigate HFD-induced metabolic derangements and improve the gut environment. Eight-week-old C57BL/6 mice were administered 50 or 100 mg/kg TLE for eight weeks. Administration of 100 mg/kg TLE resulted in decreased weight gain and body fat percentage, alongside the regulation of serum biomarkers linked to obesity induced by a HFD. Moreover, TLE enhanced intestinal barrier function by increasing the expression of tight junction proteins and ameliorated colon shortening. TLE also altered the levels of various metabolites. Especially, when compared with a HFD, it was confirmed that 2-hydroxypalmitic acid and 3-indoleacrylic acid returned to normal levels after TLE treatment. Additionally, we investigated the correlation between fecal metabolites and metabolic parameters; deoxycholic acid displayed a positive correlation with most parameters, except for colon length. In contrast, hypoxanthine was negatively correlated with most parameters. These results suggest a promising role for thyme in ameliorating obesity and related gut conditions associated with a HFD

    Therapeutic Potential of Phlorotannin-Rich Ecklonia cava Extract on Methylglyoxal-Induced Diabetic Nephropathy in In Vitro Model

    No full text
    Advanced glycation end-products (AGEs) play a vital role in the pathogenesis of diabetic complications. Methylglyoxal (MGO), one of the major precursors of AGEs, is a highly reactive dicarbonyl compound that plays an important role in the pathogenesis of diabetic nephropathy. This study was designed to evaluate the therapeutic potential of phlorotannin-rich Ecklonia cava extract (ECE) on MGO-induced diabetic nephropathy in in vitro models using mouse glomerular mesangial cells. ECE showed anti-glycation activity via breaking of AGEs-collagen cross-links and inhibition of AGEs formation and AGE-collagen cross-linking formation. The renoprotective effects were determined by assessing intracellular reactive oxygen species (ROS) and MGO accumulation, cell apoptosis, and the Nrf-2/ARE signaling pathway. MGO-induced renal damage, intracellular ROS production level, and MGO-protein adduct accumulation were significantly decreased by pretreating ECE. Moreover, ECE pretreatment exhibited preventive properties against MGO-induced dicarbonyl stress via activation of the Nrf2/ARE signaling pathway and reduction of RAGE protein expression in mouse glomerular mesangial cells. Collectively, these results indicated potential anti-glycation properties and prominent preventive effects of ECE against MGO-induced renal damage. Additionally, ECE may be utilized for the management of AGE-related diabetic nephropathy
    corecore