4 research outputs found

    Circularly polarized antenna with folded ground and parasitic branch for 60GHz WLAN

    No full text
    1

    Development of Underwater Laser Scanner with Efficient and Flexible Installation for Unmanned Underwater Vehicle

    No full text
    This paper proposes a vision-based underwater laser scanner with separate structures for an underwater camera and a line laser projector. Because the two devices can be adaptively placed regardless of the features of the unmanned underwater vehicle (UUV), the scanner has significant advantages in relation to its availability and flexibility. Position calibration between the underwater camera and laser projector guarantees a 3D measuring performance with high accuracy. To verify the proposed underwater laser scanner, a test-bed system was manufactured, which consisted of the laser projector, camera, Pan&Tilt, and Attitude and Heading Reference System (AHRS). A camera-laser calibration test and simple 3D reconstruction test were performed in a water tank and the experimental results are reported

    Robust Directional Angle Estimation of Underwater Acoustic Sources Using a Marine Vehicle

    No full text
    Acoustic source localization is used in many underwater applications. Acquiring an accurate directional angle for an acoustic source is crucial for source localization. To achieve this purpose, this paper presents a method for directional angle estimation of underwater acoustic sources using a marine vehicle. It is assumed that the vehicle is equipped with two hydrophones and that the acoustic source transmits a specific signal repeatedly. The proposed method provides a probabilistic model for time delay estimation. The probability is recursively updated by prediction and update steps. The prediction step performs a probability transition using the angular displacement of the marine vehicle. The predicted probability is updated using a generalized cross correlation function with a verification process using entropy measurement. The proposed method can provide a reliable and accurate estimation of the directional angles of underwater acoustic sources. Experimental results demonstrate good performance of the proposed probabilistic directional angle estimation method in both an inland water environment and a harbor environment

    Development of Robot Platform for Autonomous Underwater Intervention

    No full text
    KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed
    corecore